您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 平行四边形优题与易错题答案与解析
第6章平行四边形优题与易错题答案与解析1.在▱ABCD中,AB与CD的关系为:AB=CD且AB∥CD2.考点:三角形中位线定理。专题:规律型。分析:十等分点那么三角形中就有9条线段,每条线段分别长,…,让它们相加即可.解答:解:根据题意:图(1),有1条等分线,等分线的总长=;图(2),有2条等分线,等分线的总长=a;图(3),有3条等分线,等分线的总长=a;…图(4),有9条等分线,等分线的总长=a=a.故答案为a.3.考点:三角形中位线定理。分析:作CF中点G,连接DG,由于D、G是BC、CF中点,所以DG是△CBF的中位线,在△ADG中利用三角形中位线定理可求AF=FG,同理在△CBF中,也有CG=FG,那么有AF=CF.解答:解:作CF的中点G,连接DG,则FG=GC又∵BD=DC∴DG∥BF∵AE=ED∴AF=FG∴=.故答案为.4.考点:三角形中位线定理。分析:根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周长就等于原三角形周长的一半.解答:解:∵点D、E、F分别是AB、BC、AC的中点,∴DE,EF,DF分别是原三角形三边的一半,∴DEF与△ABC的周长之比=1:2.故答案为1:2.5.一个任意三角形的三边长分别是6cm,8cm,12cm,它的三条中位线把它分成三个平行四边形,则它们中周长最小是14cm.考点:三角形中位线定理。分析:周长最小的应该是中位线与最短边围成的平行四边形.解答:解:如图:AB=6cm,AC=8cm,BC=12cm,D,F,E分别为三角形各边中点.三条中位线把它分成三个平行四边形,则它们中周长最小的应该是中位线与最短边围成的平行四边形即▱ADEF.AD=EF=3cm,DE=AF=4cm,其周长为2×3+2×4=14(cm)故答案为14.6.考点:三角形中位线定理。分析:易得△ABD,△ACD为△ABC面积的一半,同理可得△BEC的面积等于△ABC面积的一半,那么阴影部分的面积等于△BEC的面积的一半.解答:解:∵D为BC中点,根据同底等高的三角形面积相等,∴S△ABD=S△ACD=S△ABC=×4=2,同理S△BDE=S△CDE=S△BCE=×2=1,∴S△BCE=2,∵F为EC中点,∴S△BEF=S△BCE=×2=1.故答案为1.7.考点:三角形中位线定理。专题:整体思想。分析:根据题意,易得MN=DE,从而证得△MNO≌△EDO,再进一步求△ODE的高,进一步求出阴影部分的面积.解答:解:连接MN,作AF⊥BC于F.∵AB=AC,∴BF=CF=BC=×8=4,在Rt△ABF中,AF==,∵M、N分别是AB,AC的中点,∴MN是中位线,即平分三角形的高且MN=8÷2=4,∴NM=DE,∴△MNO≌△EDO,O也是ME,ND的中点,∴阴影三角形的高是1.5÷2=0.75,∴S阴影=4×0.75÷2=1.5.8.考点:三角形中位线定理;翻折变换(折叠问题)。专题:操作型。分析:由翻折可得∠PDE=∠CDE,由中位线定理得DE∥AB,所以∠CDE=∠DAP,进一步可得∠APD=∠CDE.解答:解:∵△PED是△CED翻折变换来的,∴△PED≌△CED,∴∠CDE=∠EDP=48°,∵DE是△ABC的中位线,∴DE∥AB,∴∠APD=∠CDE=48°,点评:本题考查三角形中位线定理的位置关系,并运用了三角形的翻折变换知识,解答此题的关键是要了解图形翻折变换后与原图形全等.9.考点:三角形中位线定理;翻折变换(折叠问题)。分析:根据折叠图形的对称性,易得△EDF≌△EAF,运用中位线定理可知△AEF的周长等于△ABC周长的一半,进而△DEF的周长可求解.解答:解:∵△EDF是△EAF折叠以后形成的图形,∴△EDF≌△EAF,∴∠AEF=∠DEF,∵AD是BC边上的高,∴EF∥CB,又∵∠AEF=∠B,∴∠BDE=∠DEF,∴∠B=∠BDE,∴BE=DE,同理,DF=CF,∴EF为△ABC的中位线,∴△DEF的周长为△EAF的周长,即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.5.10.考点:三角形中位线定理。专题:规律型。分析:根据三角形的中位线定理建立周长之间的关系,按规律求解.解答:解:根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,那么第二个三角形的周长=△ABC的周长×=1×=,第三个三角形的周长为=△ABC的周长××=()2,第10个三角形的周长=()911.考点:三角形中位线定理;等边三角形的性质。分析:利用平移性质可得图形ABCDEFG外围的周长等于等边三角形△ABC的周长加上AE,GF长,利用三角形中位线长定理可得其余未知线段的长.解答:解:∵△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点,AB=AC=BC=4∴DE=CD=AC=×4=2,EF=GF=AG=DE=×2=1∴图形ABCDEFG外围的周长是AB+CD+BC+DE+EF+GF+AG=4+2+4+2+1+1+1=1512.考点:三角形中位线定理;等边三角形的性质。分析:根据等边三角形的中位线所围成的三角形仍是等边三角形可求得中位线的长为2,则等边三角形的边长为4.解答:解:∵等边三角形的中位线所围成的三角形的周长为6,∴中位线的长为2,∴等边三角形的边长为4.13.考点:三角形中位线定理。分析:三角形的高和梯形的高相等,那么面积之比等于的三角形的底边和梯形上下底边之和的比.解答:解:∵在△ABC中,DE为中位线,∴BC=2DE,设高为h.∴S△ADE=DE•h=DE•h;S梯形BCED=(DE+BC)•h=DE•h,∴S△ADE:S梯形BCED=,14.考点:三角形中位线定理;直角三角形斜边上的中线。分析:先根据三角形中位线定理求出AC的长,再利用直角三角形斜边上的中线等于斜边的一半解答.解答:解:∵D、F是BC、AB的中点,∴AC=2FD=2×8=16cm,∵E是AC的中点,AH⊥BC于点H,∴EH=AC=8cm.15.考点:三角形中位线定理;等腰三角形的性质。分析:由D、E是AC、AB中点,可知DE是△ABC的中位线,那么DE∥AB,即∠1=∠3,又AD=DE,又可得∠2=∠3,那么可知①②是正确的,有D是AC中点,AD=DE,可证CD=DE,再利用DE∥AB,可得出∠B=∠C.在Rt△AEC中,∠2不一定等于∠C,所以④不正确.解答:解:由题意可证明△ADE、△DEC、△ABC都是等腰三角形,△AEC是直角三角形,则结论正确的是①②③.故选D.16.解:由题意可得,DC=5cm,∵平行四边形ABCD,∴∠BAE=∠DEA,又∵AE为∠DAB的角平分线,∴∠DAE=∠DEA,∴△ADE是等腰三角形,AD=DE,∴当DE=2cm时,该平行四边形的周长是10+4=14cm;当DE=3cm时,该平行四边形的周长是10+6=16cm.17.考点:平行四边形的性质。分析:如图:根据题意可以作出两种不同的图形,所以答案有两种情况.因为在▱ABCD中,AD=2,AE平分∠DAB交CD于点E,BF平分∠ABC交CD于点F,所以DE=AD=CF=BC=2;则求得▱ABCD的周长.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,BC=AD=2,AB=CD,∴∠EAB=∠AED,∠ABF=∠BFC,∵AE平分∠DAB,BF平分∠ABC,∴∠DAE=∠BAE,∠CBF=∠ABF,∴∠AED=∠DAE,∠BFC=∠CBF,∴AD=DE,BC=FC,∴DE=CF=AD=2,由图①得:CD=DE+CF﹣EF=2+2﹣1=3,∴▱ABCD的周长为10;由图②得:CD=DE+CF+EF=2+2+1=5,∴▱ABCD的周长为14.∴▱ABCD的周长为10或14.故答案为10或14.18.考点:平行四边形的性质。分析:利用平行四边形的性质,根据三角形的面积和平行四边形的面积逐个进行判断,即可求解.解答:解:A、因为高相等,三个底是平行四边形的底,根据三角形和平行四边形的面积可知,阴影部分的面积等于平行四边形的面积的一半,正确;B、因为两阴影部分的底与平行四边形的底相等,高之和正好等于平行四边形的高,所以阴影部分的面积等于平行四边形的面积的一半,正确;C、根据平行四边形的对称性,可知小阴影部分的面积等于小空白部分的面积,所以阴影部分的面积等于平行四边形的面积的一半,正确;D、无法判断阴影部分面积是否等于平行四边形面积一半,错误.故选D.点评:本题考查了平行四边形的性质,并利用性质结合三角形的面积公式进行判断,找出选项.19.考点:平行四边形的性质。专题:动点型。分析:根据平行四边形的性质,得△ABD≌△BCD,△BEP≌△BHP,△PGD≌△PFD,所以得其面积分别相等,从而得面积相等的平行四边形有3对.解答:解:面积始终相等的平行四边形有:平行四边形AEPG和平行四边形PHCF;平行四边形ABHG和平行四边形BEFC;平行四边形AEFD和平行四边形GHCD.共3对.故选C.20.考点:平行四边形的性质。分析:可先求平行四边形的总面积,因为AE=EF=FC,所以三个小三角形的面积相等,进而可求解.解答:解:如图,过点D作DG⊥AB于点G,∵AD=6,∠DAB=30°,∴DG=3,∴平行四边形ABCD的面积为S=AB•DG=8×3=24,∴△ABC的面积为S=×24=12∴△BEF的面积S=×12=421.考点:平行四边形的性质。专题:规律型。分析:从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系.从而求出第n个图中平行四边形的个数.解答:解:从图中我们发现(1)中有6个平行四边形,(2)中有18个平行四边形,(3)中有36个平行四边形,∴第n个中有3n(n+1)个平行四边形.故选B.22.考点:平行四边形的性质。专题:应用题。分析:由于在平行四边形中,已给出条件MN∥AB∥DC,EF∥DA∥CB,因此,MN、EF把一个平行四边形分割成四个小平行四边形,所以红、紫四边形的高相等,由此可证明S1S4=S2S3.解答:解:设红、紫四边形的高相等为h1,黄、白四边形的高相等,高为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE=AF,EC=FB,所以A不对;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,所以B不对;S1S4=DE•h1•FB•h2=AF•h1•FB•h2,S2S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1S4=S2S3,故选C.23.考点:平行四边形的性质。分析:四边形具有不稳定性、外角和等于360°、内角和等于360°,不具有的是对角线互相平分;对角线互相平分的四边形是平行四边形.解答:解:A、一般四边形都具有不稳定性,不仅仅是平行四边形具有,错误;B、对角线互相平分,是平行四边形的一种判定方法,一般四边形不具有,正确;C、任意四边形的外角和等于360°,不仅仅是平行四边形具有,错误;D、任意四边形的内角和等于360°,不仅仅是平行四边形具有,错误.故选B.24.考点:平行四边形的性质。分析:根据平行四边形的性质可知△ABC的面积是平行四边形面积的一半,再进一步确定△BER和△ABC的面积关系即可.解答:解:∵S▱ABCD=12∴S△ABC=S▱ABCD=6,∴S△ABC=×AC×高=×3EF×高=6,得到:×EF×高=2,∵△BEF的面积=×EF×高=2.∴△BEF的面积为2.25.考点:垂线;多边形内角与外角。专题:分类讨论。分析:分∠2在∠1的内部和外部两种情况讨论,①当∠2在1内部时,利用四边形的内角和定理求解即可;②当∠2在∠1的外部时,根据等角的余角相等的性质∠2=∠1.解答:解:如图,因为∠1与∠2的位置不明确,所以分∠2在∠1的内部和外部两种情况讨论:(1)如图一,当∠2在1内部时,∠2=360°﹣∠1﹣90°﹣90°=360°﹣
本文标题:平行四边形优题与易错题答案与解析
链接地址:https://www.777doc.com/doc-1872785 .html