您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 抛物线中考压轴题(精选)
1.(08福建莆田)如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.(1)求抛物线的解析式.(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。(注:抛物线2yaxbxc的对称轴为2bxa)4.(08广东深圳)如图9,在平面直角坐标系中,二次函数)0(2acbxaxy的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=31.(1)求这个二次函数的表达式.(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.图9yxOEDCBAGABCDOxy图107.(08湖北荆门)已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.(1)求抛物线的解析式;(2)在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;(3)根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?10.(08湖北武汉)如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.3(08湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;OxyABOxyACBPP1DP2PAOBMDCyx(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.14.(08江苏常州)如图,抛物线24yxx与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所的直线沿y轴向上平移,使它经过原点O,得到直线l,设P是直线l上一动点.(1)求点A的坐标;(2)以点A、B、O、P为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P的坐标;(3)设以点A、B、O、P为顶点的四边形的面积为S,点P的横坐标为x,当462682S时,求x的取值范围.15、(08江苏淮安)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C.连结BP并延长交y轴于点D.(1)写出点P的坐标;(2)连结AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;(3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S.选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值.27、(08江西南昌)如图,抛物211yaxax经过点19(,)28P,且与抛物线221yaxax相交于A、B两点(1)求a值;(2)设211yaxax与x轴分别交于MN,两点(点M在点N的左边),221yaxax与x轴分别交于EF,两点(点E在点F的左边),观察MNEF,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设AB,两点的横坐标分别记为ABxx,,若在x轴上有一动点(0)Qx,,且ABxxx≤≤,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值?其最大值为多少?33、(08山东临沂)如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3)。⑴求抛物线的解析式;⑵设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。39、(08山东烟台)如图,抛物线21:23Lyxx交x轴于A、B两点,交y轴于M点.抛物线1L向右平移yxPAOBBxyAMPDOBC2个单位后得到抛物线2L,2L交x轴于C、D两点.(1)求抛物线2L对应的函数表达式;(2)抛物线1L或2L在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线1L上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线2L上,请说明理由.45、(08四川广安)25.如图,已知抛物线2yxbxc经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式.(2)设此抛物线与直线yx相交于点A,B(点B在点A的右侧),平行于y轴的直线051xmm与抛物线交于点M,与直线yx交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示).(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值,若不存在,请说明理由.49、(08四川泸州)如图,已知二次函数2yaxbxc的图像经过三点A1,0,B3,0,C0,3,它的顶点为M,又正比例函数ykx的图像于二次函数相交于两点D、E,且P是线段DExOPNMBAyy=xx=m的中点。⑴求该二次函数的解析式,并求函数顶点M的坐标;⑵已知点E2,3,且二次函数的函数值大于正比例函数时,试根据函数图像求出符合条件的自变量x的取值范围;⑶当02k时,求四边形PCMB的面积s的最小值。【参考公式:已知两点11D,xy,22E,xy,则线段DE的中点坐标为1212,22xxyy】51、(08四川宜宾)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为abacab44,22)53、(08重庆市卷)已知:如图,抛物线)0(22acaxaxy与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)。(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ。当△CQE的面积yxDMEPCBAO最大时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。54、(08浙江湖州)已知:在矩形AOBC中,4OB,3OA.分别以OBOA,所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与BC,重合),过F点的反比例函数(0)kykx的图象与AC边交于点E.(1)求证:AOE△与BOF△的面积相等;(2)记OEFECFSSS△△,求当k为何值时,S有最大值,最大值为多少?(3)请探索:是否存在这样的点F,使得将CEF△沿EF对折后,C点恰好落在OB上?若存在,求出点F的坐标;若不存在,请说明理由.55、(08浙江淮安)如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C.连结BP并延长交y轴于点D.(1)写出点P的坐标;(2)连结AP,如果△APB为等腰直角三角形,求a的值及点C、D的坐标;YXCADQBOxy-4-6CEPDB51246FAG2-2(3)在(2)的条件下,连结BC、AC、AD,点E(0,b)在线段CD(端点C、D除外)上,将△BCD绕点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S,根据不同情况,分别用含b的代数式表示S.选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b为何值时,重叠部分的面积最大?写出最大值.58、(08浙江丽水)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线2x与x轴相交于点B,连结OA,抛物线2xy从点O沿OA方向平移,与直线2x交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.66、(08湖南湘潭)已知抛物线2yaxbxc经过点A(5,0)、B(6,-6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线ykxb与抛物线相交于点C(2,m),请求出OBC的面积S的值.(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线yBOAPMx2xPF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得OCD与CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.67、(08湖南永州)如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3.(1)求此二次函数的解析式.(2)写出顶点坐标和对称轴方程.(3)点M、N在y=ax2+bx+c的图像上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.68、(08山东济南)已知:抛物线2yaxbxc(a≠0),顶点C(1,3),与x轴交于A、B两点,(10)A,.(1)求这条抛物线的解析式.(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断PMPNBEAD是否为定值?若是,请求出此定值;若不是,请说明理由.(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边.AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断PAEFPBEG是否成立.若成立,请给出证明;若不成立,请说明理由.COxADPMEBNy69、(08浙江杭州)在直角坐标系xOy中,设点A(0,t),点Q(t,b)。平
本文标题:抛物线中考压轴题(精选)
链接地址:https://www.777doc.com/doc-1882682 .html