您好,欢迎访问三七文档
一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。八年级数学第十一章函数三、函数中自变量取值范围的求法:(1).用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。(4)若解析式由上述几种形式综合而成,先求出各部分的取值范围,再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。四.函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.下面的2个图形中,哪个图象中y是关于x的函数.图1图21、列表(表中给出一些自变量的值及其对应的函数值。)2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。五、用描点法画函数的图象的一般步骤:注意:列表时自变量由小到大,相差一样,有时需对称。-大爆炸干掉学霸,我称王@╰ゞ姐、独占天下℡逗够滚别低头最普通却无可替代平头踏天下ご屌炸天的节奏ヾ我不认输!拿稳我心你称王皇冠属于女王奇葩姑娘拽天下强势控局傲视&狂朝一次不忠百次不用做他王穿着校服猖狂世界弑神者称雄三界青春万岁王者为她战天下#女帝称霸@铁骨铮铮女汉子玩炫舞的崛起丨极速灬巅峰彡丨霸欲、天下战无不胜★丶卟落战队大无畏!傲视灬天地轩哥‖逆天改命人定胜天心中有梦闯天下@||紫禁★王者丿-待我强大我给自己天下@ζ给力ㄨ男刃龙爷无敌天下至尊舍我其谁!挥笔朝夕^_^我主沉浮凌云齐天让世界为我而改变霸道菇凉最给力。飞车妹子雄起爱上自己,你就是王!不散友。syaat女皇必胜男霸ゞ本尊独霸天下。未来等我@欧霸!少年就要狂喊累都不认输慢慢坚强。永不言败籹(1)解析式法(2)列表法(3)图象法正方形的面积S与边长x的函数关系为:S=x2(x>0)六、函数有三种表示形式:八年级数学第十一章函数七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。(2)性质:当k0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。七.正比例函数的图象与性质:八、一次函数与正比例函数的图象与性质一次函数y=kx+b(b≠0)图象k,b的符号经过象限增减性正比例函数y=kxxyobxyobxyobxyoby随x增大而增大y随x增大而增大y随x的增大而减少y随x的增大而减少一、二、三一、三、四一、二、四二、三、四1、图象是经过(0,0)与(1,k)的一条直线2、当k0时,图象过一、三象限;y随x的增大而增大。当k0时,图象过二、四象限;y随x的增大而减少。k0b0k0b0k0b0k0b0九.怎样画一次函数y=kx+b的图象?1、两点法y=x+12、平移法先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,--待定系数法十、求函数解析式的方法:11.一次函数与一元一次方程:求ax+b=0(a,b是常数,a≠0)的解.x为何值时函数y=ax+b的值为0.从“数”的角度看求ax+b=0(a,b是常数,a≠0)的解.求直线y=ax+b与x轴交点的横坐标.从“形”的角度看12.一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数a≠0).x为何值时函数y=ax+b的值大于0.从“数”的角度看解不等式ax+b>0(a,b是常数,a≠0).求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围.从“形”的角度看13.一次函数与二元一次方程组:解方程组自变量(x)为何值时两个函数的值相等.并求出这个函数值从“数”的角度看解方程组确定两直线交点的坐标.从“形”的角度看cbacbayxyx222111cbacbayxyx222111应用新知例1(1)若y=5x3m-2是正比例函数,m=。(2)若是正比例函数,m=。32)2(mxmy1-21、直线y=kx+b经过一、二、四象限,则K0,b0.<>此时,直线y=bx+k的图象只能是()D练习:2、已知直线y=kx+b平行与直线y=-2x,且与y轴交于点(0,-2),则k=___,b=___.此时,直线y=kx+b可以由直线y=-2x经过怎样平移得到?-2-2练习:3.若一次函数y=x+b的图象过点A(1,-1),则b=__________。-24.根据如图所示的条件,求直线的表达式。练习:5、柴油机在工作时油箱中的余油量Q(千克)与工作时间t(小时)成一次函数关系,当工作开始时油箱中有油40千克,工作3.5小时后,油箱中余油22.5千克写出余油量Q与时间t的函数关系式.解:(1)设所求函数关系式为:Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5分别代入上式,得bkb5.35.2240解得405bk解析式为:Q=-5t+40(0≤t≤8)练习:6、某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(1)服药后______时,血液中含药量最高,达到每毫升_______毫克,接着逐步衰弱。(2)服药5时,血液中含药量为每毫升____毫克。x/时y/毫克6325O263练习:6、某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(3)当x≤2时y与x之间的函数关系式是___________。(4)当x≥2时y与x之间的函数关系式是___________。(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是___时。x/时y/毫克6325Oy=3xy=-x+841.梳理本章知识脉络,加强知识点的巩固和理解.2.进一步学会函数的研究方法,提高解题的灵活性.3.对综合性题目,会合理使用数学思想方法探究解决.巩固:小聪上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中。小聪离家的路程s(km)和所经过的时间t(分)之间的函数关系如图所示,请根据图象回答下列问题:(1)小聪去超市途中的速度是多少?回家途中的速度是多少?t(分)s(km)10203040506070120(2)小聪在超市逗留了多少时间?(3)用恰当的方式表示路程s与时间t之间的关系。(4)小聪在来去途中,离家1km处的时间是几时几分?1、在下列函数中,x是自变量,y是因变量,那些是一次函数?那些是正比例函数?y=2xy=-3x+1y=x2xy52、某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y的值随x值的增大而增大。请你举出一个满足上述条件的函数(用关系式表示)3、函数的图像与x轴交点坐标为________,与y轴的交点坐标为____________。4x32y6、若函数y=kx+b的图像经过点(-3,-2)和(1,6)求k、b及函数关系式。4、(1)对于函数y=5x+6,y的值随x值的减小而___。(2)对于函数,y的值随x值的____而增大。x3221y5、直线y=kx+b过点(1,3)和点(-1,1),则=__________。bk7、已知一次函数y=kx+b的图象经过A(a,6),B(4,b)两点。a,b是一元二次方程的两根,且ba。(1)、求这个一次函数的解析式。(2)在坐标平面内画出这个函数的图象。0652xx10、已知函数问当m为何值时,它是一次函数?4mX)2m(y5m5m28、在直角坐标系中,一次函数y=kx+b的图像经过三点A(2,0)、B(0,2)、C(m,3),求这个函数的关系式,并求m的值。9、已知一次函数的图像经过点A(2,-1)和点B,其中点B是另一条直线与y轴的交点,求这个一次函数的表达式。3x21y11、如果是正比例函数,而且对于它的每一组非零的对应值(x,y)有xy0,求m的值。8m2mxy12、如果y+3与x+2成正比例,且x=3时,y=7(1)写出y与x之间的函数关系式;(2)求当x=-1时,y的值;(3)求当y=0时,x的值。13、已知:y+b与x+a(a,b是常数)成正比例。求证:y是x的一次函数。14、为了加强公民的节水意识,合理利用水资源,某城市规定用水标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费,每户每月用水量超过6米3时,超过的部分按1元/米3。设每户每月用水量为x米3,应缴纳y元。(1)写出每户每月用水量不超过6米3和每户每月用水量超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为米3,求该用户5月份的水费。
本文标题:一次函数复习总结
链接地址:https://www.777doc.com/doc-1893972 .html