您好,欢迎访问三七文档
代数一元一次不等式(组)★重点★一元一次不等式的性质、解法★难点★变号1.定义:a>b、a<b、a≥b、a≤b、a≠b。2.一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。3.一元一次不等式组:4.不等式的性质:⑴ab←→a+cb+c⑵ab←→acbc(c0)⑶ab←→acbc(c0)⑷(传递性)ab,bc→ac⑸ab,cd→a+cb+d.5.一元一次不等式的解、解一元一次不等式6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)7.应用举例(略)勾股定理★重难点★勾股定理的验证与应用,直角三角形的识别,应用勾股定理求最近距离2a+2b=2c分式★重难点★分式的值为零或有意义,分式的加减乘除混合运算,分式方程的解法和应用,分式的混合运算与化简一、重要概念1、分式含有加、减、乘、除、乘方运算的代数式叫做有理式。有除法运算并且除式中含有字母的有理式叫做分式。(分式有意义:分母不为零)2、分母有理化把分母中的根号划去叫做分母有理化。二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:AmBm=AB,\\AmBm=AB(m≠0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)abc函数及其图象★重难点★正、反比例函数,一次的图象和性质,几者结合求解析式一、平面直角坐标系。1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数1.表示方法:⑴解析法;⑵列表法;⑶图象法。2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。3.画函数图象:⑴列表;⑵描点;⑶连线。三、几种特殊函数(定义→图象→性质)1.正比例函数⑴定义:y=kx(k≠0)或y/x=k。⑵图象:直线(过原点)⑶性质:①k0,…②k0,…2.一次函数⑴定义:y=kx+b(k≠0)⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。⑶性质:①k0,…②k0,…⑷图象的四种情况:3.反比例函数⑴定义:或xy=k(k≠0)。⑵图象:双曲线(两支)—用描点法画出。⑶性质:①k0时,图象位于…,y随x…;②k0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。四、重要解题方法1.用待定系数法求解析式(列方程[组]求解)。2.利用图象一次(正比例)函数、反比例函数中的k、b;a、b、c的符号。几何相似形★重点★相似三角形的判定和性质一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。第二套:注意:①定理中“对应”二字的含义;②平行→相似(比例线段)→平行。二、相似三角形性质1.对应线段…;2.对应周长…;3.对应面积…。三、相关作图①作第四比例项;②作比例中项。四、证(解)题规律、辅助线1.“等积”变“比例”,“比例”找“相似”。2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。、四边形★重难点★四边形的有关概念、判定、性质。分类表:1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。⑶外角和:360°2.特殊四边形⑴研究它们的一般方法:⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形┗→菱形——↑⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理③平行线间的距离处处相等。(如,找下图中面积相等的三角形)5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6.作图:任意等分线段。图形与证明(一)★重难点★证明、命题1、定义、命题概念;命题的条件与结论2、真命题与假命题3、证明(基本事实),定理概念4、互逆命题概率★重难点★等可能性、概率1、等可能性2、一般地,如果一个试验有n个等可能的结果,当其中的每个结果之一出现时,事件A发生,那么事件A发生的概率P(A)=mn3、一般地,试验的结果落在某个区域s中每一个点的机会均等,用A表示“试验结果落在s中的一个小区域m中”这个事件,那么事件A发生的概率P(A)=ms事件A发生可能出现的结果数一次试验所有等可能出现的结果数M的面积S的面积
本文标题:初二数学重难点
链接地址:https://www.777doc.com/doc-1894780 .html