您好,欢迎访问三七文档
1第18章勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222abc勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGHSSS正方形正方形ABCD,2214()2abbac,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422Sabcabc大正方形面积为222()2Sabaabb所以222abc方法三:1()()2Sabab梯形,2112S222ADEABESSabc梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,90C,则22cab,22bca,22acb②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。作法:如图所示cbaHGFEDCBAbacbaccabcababccbaEDCBA2(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;(2)以AB为一条直角边,作另一直角边为1的直角。斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是、、、。举一反三【变式】在数轴上表示的点。解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为。注:逆命题与勾股定理逆定理可以判断真假的陈述句叫做命题,写出下列原命题的逆命题并判断是否正确1.原命题:猫有四只脚.(正确)2.原命题:对顶角相等(正确)3.原命题:线段垂直平分线上的点,到这条线段两端距离相等.(正确)4.原命题:角平分线上的点,到这个角的两边距离相等.(正确)思路点拨:掌握原命题与逆命题的关系。解析:1.逆命题:有四只脚的是猫(不正确)2.逆命题:相等的角是对顶角(不正确)3.逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.(正确)4.逆命题:到角两边距离相等的点,在这个角的平分线上.(正确)总结升华:本题是为了学习勾股定理的逆命题做准备。6.勾股定理的逆定理勾股定理的逆定理的证明方法要掌握,书74页如果三角形三边长a,b,c满足222abc,那么这个三角形是直角三角形,其中c为斜边要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2a2+b2,则△ABC为锐角三角形)。(定理中a,b,c及222abc只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222acb,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。规律方法指导31.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。4.勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22ab与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222abc,时,以a,b,c为三边的三角形是钝角三角形;若222abc,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及222abc只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222acb,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形7.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222abc中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:221,2,1nnn(2,nn为正整数);2221,22,221nnnnn(n为正整数)2222,2,mnmnmn(,mnm,n为正整数)8.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.9勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.10.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°DCBAADBC题型一:直接考查勾股定理例1.在ABC中,90C.⑴已知6AC,8BC.求AB的长⑵已知17AB,15AC,求BC的长4分析:直接应用勾股定理222abc解:⑴2210ABACBC⑵228BCABAC题型二:应用勾股定理建立方程例2.⑴在ABC中,90ACB,5ABcm,3BCcm,CDAB于D,CD=⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴224ACABBC,2.4ACBCCDAB⑵设两直角边的长分别为3k,4k222(3)(4)15kk,3k,54S⑶设两直角边分别为a,b,则17ab,22289ab,可得60ab1302Sab2cm例3.如图ABC中,90C,12,1.5CD,2.5BD,求AC的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DEAB于E,12,90C1.5DECD在BDE中2290,2BEDBEBDDERtACDRtAEDACAE在RtABC中,90C222ABACBC,222()4AEEBAC3AC例4.如图RtABC,90C3,4ACBC,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm,另一棵高2cm,两树相距8cm,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了m分析:根据题意建立数学模型,如图8ABm,2CDm,8BCm,过点D作DEAB,垂足为E,则6AEm,8DEm在RtADE中,由勾股定理得2210ADAEDE答案:10mCBDADBACBACABCDE5题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a,b,c,判定ABC是否为Rt①1.5a,2b,2.5c②54a,1b,23c解:①22221.526.25ab,222.56.25cABC是直角三角形且90C②22139bc,22516a,222bcaABC不是直角三角形例7.三边长为a,b,c满足10ab,18ab,8c的三角形是什么形状?解:此三角形是直角三角形理由:222()264ababab,且264c222abc所以此三角形是直角三角题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC中,13ABcm,10BCcm,BC边上的中线12ADcm,求证:ABAC经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?类型二:勾股定理的构造应用2、如图,已知:在中,,,.求:BC的长.DCBA6举一反三【变式1】如图,已知:,,于P.求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)求A、C两点之间的距离。(2)确定目的地C在营地A的什么方向。举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?(二)用勾股定理求最短问题
本文标题:勾股定理知识点总结
链接地址:https://www.777doc.com/doc-1904411 .html