您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 15.3列分式方程解应用题练习课
列分式方程解应用题练习课1、审题;2、设未知数;列分式方程解应用题的一般步骤3、找出能表示题目全部含意的相等关系,列出分式方程;4、解分式方程;5、验根:先检验是否有增根,再检查是否合符题意;6、写出答案。常见题型及相等关系1、行程问题:基本量之间的关系:路程=速度X速度,即s=vt常见的相等关系:(1)、相遇问题:甲行程+乙行程=全路程(2)、追及问题:(设甲的速度快)1)、同时不同地:甲用的时间=乙用的时间甲的行程-乙的行程=甲乙原来相距的路程2)、同地不同时:甲用的时间=乙用的时间-时间差甲走的路程=乙走的路程3)、水(空)航行问题:顺流速度=静水中航速+水速逆流航速=静水中速度–水速2、工程问题基本量之间的关系:工作量=工作效率X工作时间常见等量关系:甲的工作量+乙的工作量=合作工作量注:工作问题常把总工程看作是单位1,水池注水问题也属于工程问题例1、甲乙两人分别骑摩托车从A、B两地相向而行,甲先行1小时之后,乙才出发,又经过4小时,两人在途中的C地相遇,相遇后,两人按原来的方向继续前行,乙在由C地到A地的途中因故停了20分钟,结果乙由C地到A地时,比甲由C地到B地还提前了40分钟,已知乙比甲每小时多行4千米,求甲乙两车的速度。分析:本题把时间作为考虑的着眼点。设甲的速度为x千米/时1)、相等关系:乙的时间=甲的时间604060202)、乙用的时间=3)、甲用的时间=乙的速度甲的速度甲用的时间甲的速度乙的速度乙用的时间45xxxx)4(4例1、甲乙两人分别骑摩托车从A、B两地相向而行,甲先行1小时之后,乙才出以,又经过4小时,两人在途中的C地相遇,相遇后,两人按原来的方向继续前行,乙在由C地到A地的途中因故停了20分钟,结果乙由C地到A地时,比甲由C地到B地还提前了40分钟,已知乙比甲每小时多行4千米,求甲乙两车的速度。解:设甲每小时行驶x千米,那么乙每小时行驶(x+4)千米根据题意,得60406020)4(445xxxx解之得,x1=16,x2=-2,都是原方程的根但x=-2不合题意,舍去所以x=16时,x+4=20答:甲车的速度为16千米/小时,乙车的速度为20千米/小时。1、一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?解:设队伍的速度为x,骑车的速度为2x,则603021515xx解得x=15经检验x=15是原方程的解。5.0215x答:这名学生追上队伍用了0.5小时。2、某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?解:设步行每小时行x千米,骑车每小时行(x+8)千米,则83612xx解得x=440÷4=10(小时)经检验x=4是方程的解。答:他步行40千米用10个小时。3、A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知小汽车与大汽车的速度之比是5:2,求两辆汽车各自的速度.解:设小汽车的速度为5x,大汽车的速度为2x,则6030551352135xx解得x=9经检验x=9是方程的解。5×9=452×9=18答:小车每小时行45千米,大车每小时行18千米。4、已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?解:设水流的速度为x,则xx204820721.填空:(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.)1m11n(nmmnambam-)(baambbama例2、一项工程,若甲单独做,刚好在规定日期内完成,若乙单做,则要超过规定时间6天完成;现甲乙两人合作4天后,剩下工程由乙单独做,刚好在规定日期内完成。问规定日期是几天?分析:设工作总量为1,工效X工时=工作量设规定日期为x天,则甲乙单完成各需x天、(x+6)天,甲乙61,1xx的工效分别为(1)、相等关系:甲乙合做4天的量+乙单独做(x-4)天的量=总量1列出方程:164)611(4xxxx(2)、相等关系:甲做工作量+乙做工作量=1列出方程得:164xxx2、甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.解:设乙每小时加工x个,甲每小时加工(x-5)个,则xx2405180解得x=20检验:x=20时x(x-5)≠0,x=20是原分式方程的解。答:乙每小时加工20个,甲每小时加工15个。x-5=153、某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?解:设他第一次每小时加工x个,第二次每小时加工2.5x个,则185.215001500xx练习1商场用50000元从外地采购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回比上一次多两倍的T恤衫,但第二次比第一次进价每件贵12元.求第一次购进多少件T恤衫.解:设第一次购进x件T恤衫,由题意得,18600050000123-=.xx方程两边都乘以3x,约去分母得,186000-150000=36x,解:解得x=1000.检验:当x=1000时,3x=3000≠0,所以,x=1000是原分式方程的解,且符合题意.答:第一次购进1000件T恤衫.练习1商场用50000元从外地采购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回比上一次多两倍的T恤衫,但第二次比第一次进价每件贵12元.求第一次购进多少件T恤衫.练习2、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。总进价(元)单价(元)数量(件数)第一批衬衫80000x第二批衬衫176000X+4相等关系:第二批衬衫数量=第一批衬衫数量ⅹ21、审题;2、设未知数;列分式方程解应用题的一般步骤3、找出能表示题目全部含意的相等关系,列出分式方程;4、解分式方程;5、验根:先检验是否有增根,再检查是否合符题意;6、写出答案。小结
本文标题:15.3列分式方程解应用题练习课
链接地址:https://www.777doc.com/doc-1907382 .html