您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > l李悦22平行四边形全章导学案
22.1.1平行四边形及其性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(10分钟)1.由___条线段首尾顺次连接组成的多边形叫四边形;四边形有_条边,___个角,四边形的内角和等于_____度;2.如图AB与BC叫___边,AB与CD叫___边;∠A与∠B叫___角,∠D与∠B叫___角;3多边形中不相邻顶点的连线叫对角线,如图四边形ABCD中对角线有___条,它们是______自学课本P116~P117,1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD记作__________。2.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。你能归纳ABCD的边、角各有什么关系吗?并证明你的结论。二、合作解疑(25分钟)如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?个平行四边形的一个外角是38°,这个平行四边形的各个内角的度数分别是:(3)ABCD有一个内角等于40°,则另外三个内角分别为:(4)平行四边形的周长为50cm,两邻边之比为2:3,则两邻边分别为:1.ABCD中,∠A︰∠B︰∠C︰∠D的值可以是()A.1︰2︰3︰4B.3︰4︰4︰3C.3︰3︰4︰4D.3︰4︰3︰42.ABCD的周长为40cm,△ABC的周长为27cm,AC的长为()A.13cmB.3cmC.7cmD.11.5cm三、综合应用拓展1.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.-2-三、当堂检测(10分钟)1.填空:(1)在ABCD中,∠A=50,则∠B=度,∠C=度,∠D=度.1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD记作__________。2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立.....的是().(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是().(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2∴AD∥BC-3-(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为().(A)5(B)6(C)8(D)121.□ABCD中,两邻角之比为1∶2,则它的四个内角的度数分别是____________.2.□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长是__________.3.如图,在□ABCD中,M、N是对角线BD上的两点,BN=DM,请判断AM与CN有怎样的数量关系,并说明理由.它们的位置关系如何呢?NMDCBA22.1.1平行四边形的性质.2学习目标:理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题学习重点:平行四边形对角线互相平分的性质,以及性质的应用.学习难点:综合运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(10分钟)想一想:1.平行四边形是一个特殊的图形,它的边、角各有什么性质?2.平行四边形除了边、角的性质外?还有没有其他的性质?探一探按课本120页的“探究”方法进行操作,并画出这两个平行四边形的对角线.实验后思考:(1)从这个实验中你是否发现平行四边形的边、角之间的关系?这与前面的结论一致吗?(2)线段OA与OC,OB与OD有什么关系(如下图)?由此你能发现平行四边形的对角线有什么性质?2.猜一猜平行四边形的对角线有什么性质?3.证一证-4-4.结论平行四边形是中心对称图形.二、合作解疑(25分钟)1.在□ABCD中,AC、BD交于点O,已知AB=8cm,BC=6cm,△AOB的周长是18cm,那么△AOD的周长是_____________.2.□ABCD的对角线交于点O,S△AOB=2cm2,则S□ABCD=__________.3.□ABCD的周长为60cm,对角线交于点O,△BOC的周长比△AOB的周长小8cm,则AB=______cm,BC=_______cm.4.□ABCD中,对角线AC和BD交于点O,若AC=8,AB=6,BD=m,那么m的取值范围是____________.5.□ABCD中,E、F在AC上,四边形DEBF是平行四边形.求证:AE=CF.FEDCBA6.如图,田村有一口四边形的池塘,在它的四角A、B、C、D处均有一棵大桃树.田村准备开挖养鱼,想使池塘的面积扩大一倍,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,画出图形,说明理由.DCBA综合应用拓展已知:如下图,ABCD的对角AC,BD交与点O.E,F分别是OA、OC的中点。求证:△OBE≌△ODF.FEODCAB-5-三、限时检测(10分钟)1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是().(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是().(A)8cm和16cm(B)10cm和16cm(C)8cm和14cm(D)8cm和12cm11.以不共线的三点A、B、C为顶点的平行四边形共有()个.(A)1(B)2(C)3(D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为()(A)2(B)53(C)35(D)15-6-13.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是()……(1)(2)(3)(A)3n(B)3n(n+1)(C)6n(D)6n(n+1课后作业1.在平行四边形中,周长等于48,①已知一边长12,求各边的长②已知AB=2BC,求各边的长③已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_______cm.3.ABCD一内角的平分线与边相交并把这条边分成cm5,cm7的两条线段,则ABCD的周长是_____cm.七、课后练习1.判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在ABCD中,AC=6、BD=4,则AB的范围是________.3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,-7-求小路BC,CD,OC的长,并算出绿地的面积.如图,在ABCD中,AB=6cm,BC=11cm,对角线AC,BD相交于点O,求△BOC与△AOB的周长的差.22.2.1平行四边形的判定1学习目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.学习重点:平行四边形的判定方法及应用.学习难点:平行四边形的判定定理与性质定理的灵活应用.学习过程:一、自主预习(10分钟)【活动一】提出问题:1.平行四边形的定义是什么?它有什么作用?2.平行四边形具有哪些性质?3.平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?【活动二】★探究:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1两组对边分别相等的四边形是平行四边形。平行四边形判定方法2对角线互相平分的四边形是平行四边形。二、合作解疑(25分钟)ABCDO-8-证一证平行四边形判定方法1两组对边分别相等的四边形是平行四边形。证明:(画出图形)平行四边形判定方法2对角线互相平分的四边形是平行四边形。证明:(画出图形)例1(教材P87例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(你还有其它的证明方法吗?比较一下,哪种证明方法简单.)综合应用拓展已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF三、限时检测(10分钟)1.
本文标题:l李悦22平行四边形全章导学案
链接地址:https://www.777doc.com/doc-1909844 .html