您好,欢迎访问三七文档
第7章基因在原核细胞中的表达(大肠杆菌中)一、外源基因在大肠杆菌中高效表达的原理二、大肠杆菌基因工程菌的构建策略三、基因工程菌的遗传不稳定性及其对策四、举例大肠杆菌作为表达外源基因受体菌的特征外源基因在大肠杆菌中的表达大肠杆菌表达外源基因的优势全基因组测序,共有4405个开放型阅读框架基因克隆表达系统成熟完善繁殖迅速、培养简单、操作方便、遗传稳定被美国FDA批准为安全的基因工程受体生物大肠杆菌作为表达外源基因受体菌的特征大肠杆菌表达外源基因的劣势缺乏对真核生物蛋白质的复性功能缺乏对真核生物蛋白质的修饰加工系统内源性蛋白酶降解空间构象不正确的异源蛋白细胞周质内含有种类繁多的内毒素一、外源基因在大肠杆菌中高效表达的原理启动子终止子核糖体结合位点密码子质粒拷贝数启动子启动子最佳距离的探测目的基因EEAEE启动子A酶切开Bal31酶解目的基因启动子启动子的筛选AprorigalKpKO1终止密码子采用鸟枪法战略,将合适大小的DNA片段克隆到启动子探针质粒pKO1上受体细胞染色体DNA上的galE、galT与质粒上报告基因galk的表达产物联合作用,可将培养基中的半乳糖酵解成红色素物质转化galE+、galT+、galK-的大肠杆菌受体菌株含有外源启动子活性的重组克隆启动子启动子的构建-35区序列-10区序列PlLPrecAPtrpPlacPtraAPtac启动子TTGACAGATACTTTGATATATAATTTGACATTAACTTAGACATAATGTTTTACATATAATTTGACATATAATPtac=3Ptrp=11Plac启动子启动子的可控性P乳糖启动子Plac的可控性:OPO高效转录阻遏蛋白诱导乳糖异丙基-b-D-硫代半乳糖苷(IPTG)野生型的Plac与其控制区Olac偶联在一起,在没有诱导物存在时,整个操纵子处于基基底水平转录底水平表达;诱导物可以使启动子Plac介导的转录大幅提高启动子启动子的可控性Plac乳糖启动子Plac的可控性:OPlacO高效转录葡萄糖代谢野生型的Plac上游附近拥有代谢激活因子(CAP)结合区,cAMP激活CAP,CAP基底水平转录结合启动子控制区,进而促进Plac介导的转录。葡萄糖代谢使cAMP减少,也能阻遏Plac介导的转录。因此,基因工程中使用的乳糖启动子均为抗葡萄糖代谢阻遏的突变型,即PlacUV5CAPcAMPcAMP浓度降低PlacUV5O高效转录cAMP:环腺苷酸启动子启动子的可控性Ptrp色氨酸启动子Ptrp的可控性:Otrp除去色氨酸色氨酸启动子Ptrp受色氨酸-阻遏蛋白复合物的阻遏,转录呈基底状态。在培养系统中去除色氨酸基底水平转录或者加入3-吲哚丙烯酸(IAA),便可有效地解除阻遏抑制作用。在正常的细菌培养体系中,除去色氨酸是困难的,因此基因工程中往往添加IAA诱导Ptrp介导的目基因的表达色氨酸或加3-吲哚丙烯酸高效转录阻遏蛋白(IAA)OtrpPtrp高效转录OtrpPtrp启动子启动子的可控性l噬菌体启动子PlL的可控性:噬菌体启动子PL受CI阻遏蛋白阻遏,很难直接诱导控制。在基因工程中常使用温度敏感型的cI突变基因cI857控制PL。cI857阻遏蛋在42℃时失活脱落,PL便可介导目的基因的表达。但在大型细菌培养罐中迅速升温非常困难,因此常使用一个双质粒控制系统,用色氨酸间接控制目的基因表达PtrpABcI857PL目的基因阻遏作用PtrpABPL表达色氨酸终止子强化转录终止的必要性外源基因在强启动子的控制下表达,容易发生转录过头现象,即RNA聚合酶滑过终止子结构继续转录质粒上邻近的DNA序列,形成长短不一的mRNA混合物过长转录物的产生在很大程度上会影响外源基因的表达,其原因如下:转录产物越长,RNA聚合酶转录一分子mRNA所需的时间就相应增加,外源基因本身的转录效率下降;如果外源基因下游紧接有载体上的其它重要基因或DNA功能区域,如选择性标记基因和复制子结构等,则RNA聚合酶在此处的转录可能干扰质粒的复制及其它生物功能,甚至导致重组质粒的不稳定性;过长的mRNA往往会产生大量无用的蛋白质,增加工程菌无谓的能量消耗;更为严重的是,过长的转录物往往不能形成理想的二级结构,从而大大降低外源基因编码产物的翻译效率终止子强终止子的选择与使用目前外源基因表达质粒中常用的终止子是来自大肠杆菌rRNA操纵子上的rrnT1T2以及T7噬菌体DNA上的Tf。对于一些终止作用较弱的终止子,通常可以采用二聚体终止子串联的特殊结构,以增强其转录终止作用终止子也可以象启动子那样,通过特殊的探针质粒从细菌或噬菌体基因组DNA中克隆筛选pCP1AproriTcr筛选Apr、Tcs的转化子核糖体结合位点外源基因在大肠杆菌细胞中的高效表达不仅取决于转录启动频率,而且在很大程度上还与mRNA的翻译起始效率密切相关。大肠杆菌细胞中结构不同的mRNA分子具有不同的翻译效率,它们之间的差别有时可高达数百倍。mRNA翻译的起始效率主要由其5‘端的结构序列所决定,称为核糖体结合位点(RBS)核糖体结合位点大肠杆菌核糖体结合位点包括下列四个特征结构要素:位于翻译起始密码子上游的6-8个核苷酸序列5’UAAGGAGG3’,即Shine-Dalgarno(SD)序列,它通过识别大肠杆菌核糖体小亚基中的16SrRNA3’端区域3’AUUCCUCC5’并与之专一性结合,将mRNA定位于核糖体上,从而启动翻译;翻译起始密码子,大肠杆菌绝大部分基因以AUG作为阅读框架的起始位点,但有些基因也使用GUG或UUG作为翻译起始密码子;SD序列与翻译起始密码子之间的距离及碱基组成;基因编码区5’端若干密码子的碱基序列核糖体结合位点的结构核糖体结合位点核糖体结合位点对外源基因表达的影响SD序列的影响:一般来说,mRNA与核糖体的结合程度越强,翻译的起始效率就越高,而这种结合程度主要取决于SD序列与16SrRNA的碱基互补性,其中以GGAG四个碱基序列尤为重要。对多数基因而言,上述四个碱基中任何一个换成C或T,均会导致翻译效率大幅度降低核糖体结合位点核糖体结合位点对外源基因表达的影响SD序列与起始密码子之间的序列的影响:SD序列下游的碱基若为AAAA或UUUU,翻译效率最高;而CCCC或GGGG的翻译效率则分别是最高值的50%和25%。紧邻AUG的前三个碱基成份对翻译起始也有影响,对于大肠杆菌b-半乳糖苷酶的mRNA而言,在这个位置上最佳的碱基组合是UAU或CUU,如果用UUC、UCA或AGG取代之,则酶的表达水平低20倍核糖体结合位点核糖体结合位点对外源基因表达的影响SD序列与起始密码子之间的距离的影响:SD序列与起始密码子之间的精确距离保证了mRNA在核糖体上定位后,翻译起始密码子AUG正好处于核糖体复合物结构中的P位,这是翻译启动的前提条件。在很多情况下,SD序列位于AUG之前大约七个碱基处,在此间隔中少一个碱基或多一个碱基,均会导致翻译起始效率不同程度的降低核糖体结合位点核糖体结合位点对外源基因表达的影响起始密码子及其后续若干密码子的影响:大肠杆菌中的起始tRNA分子可以同时识别AUG、GUG和UUG三种起始密码子,但其识别频率并不相同,通常GUG为AUG的50%而UUG只及AUG的25%。除此之外,从AUG开始的前几个密码子碱基序列也至关重要,至少这一序列不能与mRNA的5’端非编码区形成茎环结构,否则便会严重干扰mRNA在核糖体上的准确定位目前广泛用于外源基因表达的大肠杆菌表达型质粒上,均含有与启动子来源相同的核糖体结合位点序列,序列和间隔是最佳的密码子生物体对密码子的偏爱性不同的生物,甚至同种生物不同的蛋白质编码基因,对简并密码子使用频率并不相同,具有一定的偏爱性,其决定因素是:生物基因组中的碱基含量在富含AT的生物(如单链DNA噬菌体fX174)基因组中,密码子第三位上的U和A出现的频率较高;而在GC丰富的生物(如链霉菌)基因组中,第三位上含有G或C的简并密码子占90%以上的绝对优势密码子与反密码子相互作用的自由能中等强度规律细胞内tRNA的含量如GGG、CCC、GCG、GGC、AAA、UUU、AUA、UAU等使用少;如GUG、CAC、UCG、AGC、ACA、UGU、AUC、UUG等使用多;密码子密码子偏爱性对外源基因表达的影响由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择。一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达:外源基因全合成同步表达相关tRNA编码基因密码子密码子偏爱性对外源基因表达的影响按照大肠杆菌密码子的偏爱性规律,设计更换外源基因中不适宜的相应简并密码子,重组人胰岛素、干扰素以及生长激素在大肠杆菌中的高效表达均采用了这种方法外源基因全合成密码子密码子偏爱性对外源基因表达的影响对于那些含有不和谐密码子种类单一、出现频率较高、而本身分子量又较大的外源基因而言,则选择相关tRNA编码基因同步克隆表达的策略较为有利。例如,在人尿激酶原cDNA的412个密码子中,共含有22个精氨酸密码子,其中7个AGG、2个AGA,而大肠杆菌受体细胞中tRNAAGG和tRNAAGA的丰度较低。为了提高人尿激酶原cDNA在大肠杆菌中的高效表达,将大肠杆菌的这两个tRNA编码基因克隆在另一个高表达的质粒上。由此构建的大肠杆菌双质粒系统有效地解除了受体细胞对外源基因高效表达的制约作用同步表达相关tRNA编码基因质粒拷贝数质粒拷贝数对细菌生长代谢的影响目前实验室里广泛使用的表达型质粒在每个大肠杆菌细胞中可达数百甚至上千个拷贝,质粒的扩增过程通常发生在受体细胞的对数生长期内,而此时正是细菌生理代谢最旺盛的阶段。质粒分子的过度增殖以及其后目的基因的高效表达势必会影响受体细胞的生长代谢,进而导致重组质粒的不稳定性以及目的基因宏观表达水平的下降解决上述难题的一种有效策略是将重组质粒的扩增纳入可控制的轨道质粒拷贝数质粒扩增时序的控制pCP3拥有一个温度可诱导型的复制子pCP3PLMCSoriApr在28℃时,每个细胞的质粒拷贝数为60在42℃时,拷贝数迅速增至300-600在此温度下,受体细胞染色体上的CI基因表达的温度敏感型阻遏蛋白失活因此,用一种手段同时控制质粒拷贝数和基因的表达二、大肠杆菌基因工程菌的构建策略1包涵体型异源蛋白的表达2分泌型异源蛋白的表达3融合型异源蛋白的表达4寡聚型异源蛋白的表达5整合型异源蛋白的表达包涵体型异源蛋白的表达包涵体及其性质在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体(InclusionBodies,IB)。富含蛋白质的包涵体多见于生长在含有氨基酸类似物培养基的大肠杆菌细胞中,由这些氨基酸类似物所合成的蛋白质往往会丧失其理化特性和生物功能,从而集聚形成包涵体。由高效表达质粒构建的大肠杆菌工程菌大量合成非天然性的同源或异源蛋白质,后者在一般情况下也以包涵体的形式存在于细菌细胞内。除此之外,包涵体中还含有少量的DNA、RNA和脂多糖等非蛋白分子1包涵体型异源蛋白的表达以包涵体形式表达目的蛋白的优缺点能简化外源基因表达产物的分离操作包涵体表达形式的优点:包涵体的水难溶性及其密度远大于其它细胞碎片和细胞成分,菌体经超声波裂解后,直接通过高速离心即可将重组异源蛋白从细菌裂解物中分离出来能在一定程度上保持表达产物的结构稳定在形成包涵体之后,大肠杆菌的蛋白酶降解作用基本上对异源重组蛋白的稳定性已构不成威胁以包涵体形式表达目的蛋白的优缺点包涵体表达形式的缺点:以包涵体形式表达的重组蛋白丧失了原有的生物活性,必须通过有效的变性复性操作,才能回收得到具有正确空间构象(因而具有生物活性)的目标蛋白,因此包涵体变复性操作的效率对目标产物的收率至关重要。然而,这也是一个技术难题,尤其当目标蛋白分子中的Cys残基数目较高时,体外复性蛋白质的成功率相当低,一般不超过30%以包涵体形式
本文标题:第7章-原核表达
链接地址:https://www.777doc.com/doc-1914805 .html