您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高考数学一轮复习知识点攻破习题-数列求和
-1-数列求和时间:45分钟分值:100分一、选择题(每小题5分,共30分)1.设数列{an}的前n项和为Sn,且an=-2n+1,则数列{Snn}的前11项和为()A.-45B.-50C.-55D.-66解析:Sn=n[-1+(-2n+1)]2=-n2,即Snn=-n,则数列{Snn}的前11项和为-1-2-3-4-…-11=-66.答案:D2.若Sn=1-2+3-4+…+(-1)n-1n,则S17+S33+S50等于()A.1B.-1C.0D.2解析:S2n=-n,S2n+1=S2n+a2n+1=-n+2n+1=n+1,∴S17+S33+S50=9+17-25=1.答案:A3.数列1,1+2,1+2+4,…,1+2+22+…+2n-1,…的前n项和Sn1020,那么n的最小值是()A.7B.8C.9D.10解析:an=1+2+22+…+2n-1=2n-1,∴Sn=(21+22+…+2n)-n=2(2n-1)2-1-n=2n+1-2-n.Sn1020即2n+1-2-n1020.∵210=1024,1024-2-9=10131020.故nmin=10.答案:D4.已知数列{2(n+1)2-1}的前n项和为Sn,则limn→∞Sn等于()A.0B.1[来源:高考%资源网KS%5U]C.32D.2解析:∵2(n+1)2-1=2n(n+2)=1n-1n+2∴Sn=(11-13)+(12-14)+(13-15)+…+(1n-2-1n)+(1n-1-1n+1)+(1n-1n+2)=1+12-1n+1-1n+2.∴limn→∞Sn=limn→∞(1+12-1n+1-1n+2)=32.答案:C5.已知Sn是等差数列{an}的前n项和,S100且S11=0,若Sn≤Sk对n∈N*恒成立,则正-2-整数k的构成集合为()A.{5}B.{6}C.{5,6}D.{7}解析:由S100,且S11=0得S10=10(a1+a10)20⇒a1+a10=a5+a60S11=11(a1+a11)2=0⇒a1+a11=2a6=0,故可知{an}为递减数列且a6=0,所以S5=S6≥Sn,即k=5或6.答案:C6.(2009·江西高考)数列{an}的通项an=n2(cos2nπ3-sin2nπ3),其前n项和为Sn,则S30为()A.470B.490C.495D.510解析:an=n2·cos2n3π,a1=12·(-12),a2=22(-12),a3=32,a4=42(-12),…S30=(-12)(12+22-2·32+42+52-2·62+…+282+292-2·302)=(-12)k=110[(3k-2)2+(3k-1)2-2·(3k)2]=(-12)k=110(-18k+5)=-12[-18·10(1+10)2+50]=470.答案:A二、填空题(每小题5分,共20分)7.数列{an}的通项公式为an=n+2n(n=1,2,3,…),则{an}的前n项和Sn=__________.解析:由题意得数列{an}的前n项和等于(1+2+3+…+n)+(2+22+23+…+2n)=n(n+1)2+2-2n+11-2=n(n+1)2+2n+1-2.答案:n(n+1)2+2n+1-2[来源:高考%资源网KS%5U]8.数列112+2,122+4,132+6,142+8…的前n项和等于________.解析:an=1n2+2n=121n-1n+2∴Sn=121-13+12-14+13-15+…+1n-1n+2=121+12-1n+1-1n+2=34-2n+32(n+1)(n+2).答案:34-2n+32(n+1)(n+2)9.已知数列{an}的通项公式为an=2n-1+1,则a1C0n+a2C1n+a3C2n+…+an+1Cnn=________.解析:a1C0n+a2C1n+…+an+1Cnn=(20+1)C0n+(21+1)C1n+(22+1)C2n+…+(2n+1)Cnn=20C0n+21C1n+22C2n+…+2nCnn+C0n+C1n+…+Cnn=(2+1)n+2n=3n+2n.答案:2n+3n10.(2010·重庆质检二)设数列{an}为等差数列,{bn}为公比大于1的等比数列,且a1=b1-3-=2,a2=b2,a2+a62=b2b4,令数列{cn}满足cn=anbn2,则数列{cn}的前n项和Sn等于________.解析:设{an}的公差为d,{bn}的公比为q(q1),∵a2+a62=b2b4,∴a4=b3,∴2+3d=2q2①,由a2=b2,得:2+d=2q②,由①②得d=2,q=2,∴an=2+(n-1)·2=2n,bn=2·2n-1=2n.∴cn=anbn2=n·2n,∴Sn=c1+c2+…+cn=1·2+2·22+…+n·2n③∴2Sn=1·22+2·23+…+n·2n+1④,③-④得:-Sn=2+(22+23+…+2n)-n·2n+1=2(1-2n)1-2-n·2n+1=(1-n)·2n+1-2,∴Sn=(n-1)2n+1+2.答案:(n-1)2n+1+2三、解答题(共50分)11.(15分)求和:(1)11×3+13×5+…+1(2n-1)(2n+1).(2)12!+23!+34!+…+n(n+1)!.解:(1)∵1(2n-1)(2n+1)=12(12n-1-12n+1)∴原式=12(1-13)+12(13-15)+…+12(12n-1-12n+1)=12(1-13+13-15+…+12n-1-12n+1)=12(1-12n+1)=n2n+1.(2)∵n(n+1)!=(n+1)-1(n+1)!=1n!-1(n+1)!∴原式=11!-12!+12!-13!+…+1n!-1(n+1)![来源:高考%资源网KS%5U]=1-1(n+1)!.12.(15分)已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和为Sn,Tn=S2n-Sn.(1)求数列{bn}的通项公式;(2)求证:Tn+1Tn;解:(1)由bn=an-1得an=bn+1,代入2an=1+anan+1,得2(bn+1)=1+(bn+1)(bn+1+1),整理,得bnbn+1+bn+1-bn=0,从而有1bn+1-1bn=1,∵b1=a1-1=2-1=1,∴{1bn}是首项为1,公差为1的等差数列,∴1bn=n,即bn=1n.(2)∵Sn=1+12+…+1n,∴Tn=S2n-Sn=1n+1+1n+2+…+12n,Tn+1=1n+2+1n+3+…+12n+12n+1+12n+2,Tn+1-Tn=12n+1+12n+2-1n+112n+2+12n+2-1n+1=0,(∵2n+12n+2)∴Tn+1Tn.13.(20分)(2009·全国卷Ⅰ)在数列{an}中,a1=1,an+1=(1+1n)an+n+12n.-4-(1)设bn=ann,求数列{bn}的通项公式;(2)求数列{an}的前n项和Sn.解:(1)由已知得b1=a1=1,且an+1n+1=ann+12n,即bn+1=bn+12n,从而b2=b1+12,b3=b2+122,…bn=bn-1+12n-1(n≥2),于是bn=b1+12+122+…+12n-1=2-12n-1(n≥2).又b1=1,故所求数列{bn}的通项公式为bn=2-12n-1.(2)由(1)知an=n(2-12n-1)=2n-n2n-1.令Tn=k=1nk2k-1,则2Tn=k=1nk2k-2,于是Tn=2Tn-Tn=k=0n-112k-1-n2n-1=4-n+22n-1.又k=1n(2k)=n(n+1),所以Sn=n(n+1)+n+22n-1-4.[来源:高考%资源网KS%5U]-5--6-w.w.w.k.s.5.u.c.o.m
本文标题:高考数学一轮复习知识点攻破习题-数列求和
链接地址:https://www.777doc.com/doc-1916239 .html