您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 高考数学递推数列求通项专题
高考递推数列求通项题型分类归纳解析包钢一中郝丽丽通过一轮,二轮紧张而有序的高考复习,在大量的练习讲解中不断归纳充实,特将数列这个专题中的一类,即已知递推关系求数列通项总结分类,对学生手中的练习题目综合整理,使其考察方向及应考方法更清晰,学生更易掌握。类型1)(1nfaann解法:把原递推公式转化为)(1nfaann,利用累加法(逐差相加法)求解。例1:已知数列na满足211a,nnaann211,求na。解:由条件知:111)1(1121nnnnnnaann分别令)1(,,3,2,1nn,代入上式得)1(n个等式累加之,即)()()()(1342312nnaaaaaaaa)111()4131()3121()211(nn所以naan111211a,nnan1231121类型2nnanfa)(1解法:把原递推公式转化为)(1nfaann,利用累乘法(逐商相乘法)求解。例2:已知数列na满足321a,nnanna11,求na。解:由条件知11nnaann,分别令)1(,,3,2,1nn,代入上式得)1(n个等式累乘之,即1342312nnaaaaaaaann1433221naan11又321a,nan32例3:已知31a,nnanna23131)1(n,求na。解:123132231232)2(31)2(32)1(31)1(3annnnan3437526331348531nnnnn。变式:(2004,全国I,理15.)已知数列{an},满足a1=1,1321)1(32nnanaaaa(n≥2),则{an}的通项1___na12nn解:由已知,得nnnnaanaaaa13211)1(32,用此式减去已知式,得当2n时,nnnnaaa1,即nnana)1(1,又112aa,naaaaaaaaann13423121,,4,3,1,1,将以上n个式子相乘,得2!nan)2(n类型3qpaann1(其中p,q均为常数,)0)1((ppq)。解法(待定系数法):把原递推公式转化为:)(1nnapa,其中1pq,再利用换元法转化为等比数列求解。例4:已知数列na中,11a,321nnaa,求na.解:设递推公式321nnaa可以转化为)(21nnaa即321nnaa.故递推公式为)3(231nnaa,令3nnab,则4311ab,且23311nnnnaabb.所以nb是以41b为首项,2为公比的等比数列,则11224nnnb,所以321nna.变式:(2006,重庆,文,14)在数列na中,若111,23(1)nnaaan,则该数列的通项na_______________(key:321nna)类型4nnnqpaa1(其中p,q均为常数,)0)1)(1((qppq)。(或1nnnaparq,其中p,q,r均为常数)。解法:一般地,要先在原递推公式两边同除以1nq,得:qqaqpqannnn111引入辅助数列nb(其中nnnqab),得:qbqpbnn11再待定系数法解决。例5:已知数列na中,651a,11)21(31nnnaa,求na。解:在11)21(31nnnaa两边乘以12n得:1)2(32211nnnnaa令nnnab2,则1321nnbb,解之得:nnb)32(23所以nnnnnba)31(2)21(32变式:(见二模第22题):nnnaa3521,nnnaa)2(531变式:(08年高考全国卷220)*11,3,NnSaaannn解:,32,3111nnnnnnnnSSSSSa两边同除以13n,得31332311nnnnSS,令11111)32)(13()32)(1(1),1(321,3132,3nnnnnnnnnnabbbbbbSb则;nnnaS32)3(1类型5递推公式为nnnqapaa12(其中p,q均为常数)。解法:把原递推公式转化为)(112nnnnaakaa,令qkpk,解得k,的值,借助数列nnaa1为等比数列,求得na通项。例6:(2006,福建,文,22)已知数列na满足*12211,3,32().nnnaaaaanN求数列na的通项公式;(I)解:nnnnnnnnaaaakkkkaakaa22,21,1223),(112112=-nnnnnnnnnnnaaaaaaaaaaaa22)(),(2;11)2(211211121121又;由1221211nnnnnnnaaaaa练习:已知数列na中,11a,22a,nnnaaa313212,求na。1731:()443nnkeya。类型6递推公式为nS与na的关系式。(或()nnSfa)解法:利用)2()1(11nSSnSannn与)()(11nnnnnafafSSa消去nS)2(n或与)(1nnnSSfS)2(n消去na进行求解。例7:数列na前n项和2214nnnaS.(1)求1na与na的关系;(2)求通项公式na.解:(1)由2214nnnaS得:111214nnnaS于是)2121()(1211nnnnnnaaSS所以11121nnnnaaannnaa21211.(2)应用类型4(nnnqpaa1(其中p,q均为常数,)0)1)(1((qppq))的方法,上式两边同乘以12n得:22211nnnnaa由1214121111aaSa.于是数列nna2是以2为首项,2为公差的等差数列,所以nnann2)1(22212nnna变式:(一轮复习示范卷7)数列na中,)2(122,121nSSaannn,求数列的前n项和nS。Key:121nSn类型7rnnpaa1)0,0(nap解法:这种类型一般是等式两边取对数后转化为paaaaannrlogloglog1,再利用待定系数法求解。例8:(二轮复习示范卷3)已知数列{na}中,311,2nnaaa,求数列.的通项公式na解:由两边取以2为底的对数得nnaa22log3log1,令nanb2log,则1312223lognnnnab类型8周期型解法:由递推式计算出前几项,寻找周期。例9:若数列na满足)121(,12)210(,21nnnnnaaaaa,若761a,则20a的值为_____75______。变式:(2005,湖南,文,5)已知数列}{na满足)(133,0*11Nnaaaannn,则20a=()A.0B.3C.3D.23Key:(B)
本文标题:高考数学递推数列求通项专题
链接地址:https://www.777doc.com/doc-1916895 .html