您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016-2017广州增城区初三数学九年级期末试题及答案
第1页(共37页)2016~2017广州增城区初三数学九年级期末试题及答案一、选择题(每小题3分,共24分)1.一元二次方程2x(3x﹣2)=(x﹣1)(3x﹣2)的解是()A.x=﹣1B.x=C.x1=,x2=0D.x1=,x2=﹣12.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根3.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.,πC.2,D.2,4.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>﹣25.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4B.5C.6D.76.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()第2页(共37页)A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)7.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)8.在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为C1,C1关于原点对称的图象为C2,则直线y=a(a为常数)与C1、C2的交点共有()A.1个B.1个或2个C.1个或2个或3个D.1个或2个或3个或4个二、填空题(每小题3分,共21分)9.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是bc(用“>”或“<”号填空)10.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.11.正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是.12.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=第3页(共37页)∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为.13.如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.14.如图,P是⊙O外一点,PA和PB分别切⊙O于A、B两点,已知⊙O的半径为6cm,∠PAB=60°,若用图中阴影部分以扇形围成一个圆锥的侧面,则这个圆锥的高为.15.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为.三、解答题16.父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.17.在如图的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△第4页(共37页)AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出平面直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系,以B为位似中心,做△BA2C2,使△BA2C2与△ABC位似,且△BA2C2与△ABC位似比为2:1,并直接写出A2的坐标.18.如图,已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°,当四边形ABCD和EFCG均为正方形时,连接BF.(1)求证:△CAE∽△CBF;(2)若BE=1,AE=2,求CE的长.19.如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.第5页(共37页)20.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.21.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多能出租一次,且每辆车的日租金x(元)是5的倍数,发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆,已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)设每日净收入为w元,请写出w与x之间的函数关系式;(3)若某日的净收入为4420元,且使游客得到实惠,则当天的观光车的日租金是多少元?22.问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.第6页(共37页)【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图1证明上述结论.【类比引申】如图2,四边形ABCD中∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD【探究应用】如图3,在某公园的同一水平面上,四条通道围成的ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(,米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73).23.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.第7页(共37页)第8页(共37页)2016-2017学年河南省漯河市召陵区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.一元二次方程2x(3x﹣2)=(x﹣1)(3x﹣2)的解是()A.x=﹣1B.x=C.x1=,x2=0D.x1=,x2=﹣1【考点】解一元二次方程-因式分解法.【分析】首先移项,再利用提取公因式法分解因式,进而解方程得出答案.【解答】解:2x(3x﹣2)=(x﹣1)(3x﹣2)2x(3x﹣2)﹣(x﹣1)(3x﹣2)=0,(3x﹣2)[2x﹣(x﹣1)]=0,解得:x1=,x2=﹣1.故选:D.2.y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【考点】根的判别式;一次函数的定义.【分析】由一次函数的定义可求得k的取值范围,再根据一元二次方程的判别式可求得答案.【解答】解:∵y=x+1是关于x的一次函数,∴≠0,∴k﹣1>0,解得k>1,第9页(共37页)又一元二次方程kx2+2x+1=0的判别式△=4﹣4k,∴△<0,∴一元二次方程kx2+2x+1=0无实数根,故选A.3.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.,πC.2,D.2,【考点】正多边形和圆;弧长的计算.【分析】连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求出OM,再由弧长公式求出弧BC的长即可.【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OA=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2,的长==;故选:D.4.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>﹣2【考点】反比例函数的性质.第10页(共37页)【分析】根据反比例函数的图象和性质逐项判断即可.【解答】解:当x=﹣1时,代入反比例函数解析式可得y=2,∴反比例函数y=﹣的图象必过点(﹣1,2),故A正确;∵在反比例函数y=﹣中,k=﹣2<0,∴函数图象在二、四象限,且在每个象限内y随x的增大而增大,故B不正确,C正确;当x=1时,y=﹣2,且在第四象限内y随x的增大而增大,∴当x>1时,则y>﹣2,故D正确.故选B.5.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4B.5C.6D.7【考点】旋转的性质;平行线的判定.【分析】只要证明△BAC∽△BDA,推出=,求出BD即可解决问题.【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,第11页(共37页)∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.6.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理.【分析】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可.【解答】解:连接AC,作AC,AB的垂直平分线,交格点于点O′,则点O′就是所在圆的圆心,∴三点组成的圆的圆心为:O′(2,0),∵只有∠O′BD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.第12页(共37页)7.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.8.在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为C1,C1关于原点对称第13页(共37页)的图象为C2,则直线y=a(a为常数)与C1、C2的交点共有()A.1个B.1个或2个C.1个或2个或3个D.1个或2个
本文标题:2016-2017广州增城区初三数学九年级期末试题及答案
链接地址:https://www.777doc.com/doc-1921712 .html