您好,欢迎访问三七文档
高二数学教学进度计划表周次章节教学内容教学时数集体备课发言人备注16.1不等式的性质1复习6.2算术平均数与几何平均数1复习6.3不等式的证明(一):综合法1胡佐华26.3不等式的证明(二):分析法、放缩法、换元法、习题课46.4不等式解法举例(一):绝对值不等式1梁玉棠叶钦耀36.4不等式解法举例(二):一元分式高次、无理不等式、指数不等式、对数不等式、含参数不等式46.4不等式解法举例(三):习题课146.5含有绝对值的不等式2何国柱秦副校长第六章小结与复习2第六章测试15第六章测试讲评17.1直线的倾斜角和斜率2吴强刘瑞红7.2直线方程(一):点斜式、斜截式16国庆节放假7.2直线方程(二):两点式、截距式、一般式、习题课377.3两条直线的位置关系(一):平行与垂直、夹角、交点、点到直线的距离、对称5梁培德易文辉87.3两条直线的位置关系(二):习题课17.4简单的线性规划3韩荣胡佐华研究实习线性规划的实际应用19单元测验直线方程27.5曲线和方程310期中考试117.6圆的方程:标准方程、一般方程、参数方程、位置关系5叶钦耀梁玉棠12第七章小结与复习28.1椭圆及其标准方程3何国柱秦副校长138.2椭圆的简单几何性质48.1双曲线及其标准方程(一)1吴强刘瑞红148.2双曲线及其标准方程(二)28.3双曲线的简单几何性质3158.5抛物线及其标准方程3梁培德易文辉8.6抛物线的简单几何性质216第八章小结与复习2韩荣胡佐华圆锥曲线综合问题2第八章测验117下学期新课518下学期新课519期末复习520期末考试21评卷、试卷分析22期末总结、放假高二数学教材分析“直线、平面、简单几何体”简介一、内容与要求(一)本章主要内容是立体几何的基础知识和解决立体几何问题的基本思想方法本章的具体知识点主要包括:平面及其基本性质,两条直线的位置关系,平行直线,对应边分别平行的角,异面直线所成的角,异面直线的公垂线,异面直线的距离,直线和平面的位置关系,直线和平面平行的判定与性质,直线和平面垂直的判定与性质,点到平面的距离,斜线在平面上的射影,直线和平面所成的角,三垂线定理及其逆定理,两个平面的位置关系,平行平面的判定与性质,平行平面间的距离,二面角及其平面角,两个平面垂直的判定与性质,棱柱,棱锥,多面体和正多面体,球。(二)本章在体系编排上分为两大节:第一大节是“空间直线和平面”,第二大节是“简单几何体”1.直线和平面是最基本的几何元素,空间直线和平面的位置关系是立体几何的基础知识。学好这一部分内容,对于学生在已有的平面图形知识基础上,建立空间观念,使对图形的认识实现从平面图形到立体图形这一飞跃,是非常重要的。第一大节包括6小节,依次按照平面、空间直线、直线和平面平行、直线和平面垂直、两平面平行、两平面垂直的顺序编排。这6节之间密切联系,前面内容是后面内容的理论根据,后面内容既巩固了前面内容,又发展和推广了对前面内容的认识。从而形成了一个关于空间直线和平面位置关系的概念、判定和性质的知识体系。本大节无论在全章的知识系统中,还是在培养学生的辩证唯物主义观点、空间想象能力和逻辑思维能力方面,都具有重要的基础作用。2.简单几何体,是指最基本、最常见的几何体.按照大纲的规定,本章中有关简单几何体只讨论棱柱、棱锥、多面体和正多面体、球。这些内容依次排列,构成第二大节所含的4小节。由于初中几何已学过圆柱和圆锥的有关内容,台体(圆台、棱台)又可以通过从大锥体上截去小锥体而得出,为节约课时以便实现高中数学教学内容的更新,本章中的简单几何体比原《立体几何》(必修本)在内容上精简幅度较大,删去了圆柱、圆锥、圆台、棱台等,只保留了最基本的多面体(棱柱和棱锥)、一般多面体的有关概念、球。关于棱柱和棱锥,教学内容包括有关概念、性质、直观图的画法三部分.其中直观图的画法仅重点讨论直棱柱和正棱锥的直观图。为对有关体积的计算形成统一认识,第二大节中第一个阅读材料安排了《柱体和锥体的体积》,介绍了祖氏原理,并根据这一原理对柱体和锥体的体积公式作了理论上的说明。关于多面体,教学内容包括有关概念和欧拉公式。此外,还安排了阅读材料《欧拉公式和正多面体的种类》,对欧拉公式的推导作了简要介绍。关于球,教学内容包括有关概念、性质、球的体积和表面积.本章通过“分割,求近似和,化为准确和”的方法,即运用“化整为零,又积零为整”的极限思想,对于球的体积和表面积公式进行了推导,这种处理方法与原《立体几何》(必修本)有较大变化。教学中对这两公式的推导,只要求了解其基本思想方法即可,重点在于掌握公式本身,而不必要求学生一定要掌握公式推导的细节。第二大节的内容,既是对简单几何体基础知识的重点讨论,又是对第一大节中空间直线和平面位置关系相关知识的综合运用。(三)本章的教学要求1.掌握平面的基本性质,会画图表示平面。2.掌握空间两条直线的位置关系,能够画出空间两条直线的各种位置关系的图形;掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会计算已给公垂线时的距离)。会用上述概念以及空间两条直线平行与垂直关系的性质和判定,进行论证和解决有关问题。3.掌握空间直线和平面的位置关系,能够画出空间直线和平面的各种位置关系的图形;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;掌握三垂线定理及其逆定理。会用上述概念以及直线与平面平行、垂直关系的性质和判定,进行论证和解决有关问题。4.掌握平面与平面的位置关系,能够画出平面与平面的各种位置关系的图形;掌握二面角、二面角的平面角、两个平面间的距离的概念。会用上述概念以及平面与平面平行、垂直关系的性质和判定,进行论证和解决有关问题。5.进一步熟悉反证法,会用反证法证明简单的问题。6.掌握棱柱的概念、性质,会用斜二测画法画水平放置的平面图形和直棱柱的直观图。7.掌握棱锥的概念、正棱锥的性质,会画正棱锥的直观图。8.了解多面体、凸多面体、正多面体的概念,理解多面体的欧拉公式。9.掌握球的概念、性质、体积及表面积公式。10.通过本章教学,培养学生的辩证唯物主义观点、空间想象能力和逻辑思维能力.二、本章的特点(一)重视加强三种数学语言功能的发挥,使教材更有利于培养学生的空间想象能力数学语言是在数学思维中产生和发展的,又是数学思维不可缺少的重要工具.在对数学语言的研究中,通常按数学语言所使用的主要词汇,将数学语言分为三种:文字语言、符号语言和图象语言。例如,“垂直于同一平面的两条直线平行”是一个立体几何定理的文字语言形式;是该定理的符号语言形式;用图象语言,这个定理则可表示为图1。几种语言各有特点,发挥着不同的功能,又互相依存,互相制约。图1本章编写中注意了采取以下几点措施来加强三种数学语言功能的发挥。1.从图象语言入手,有序地建立三种数学语言的联系当代著名数学家、数学教育家G.波利亚将一般数学问题的解决分为四个水平,即图象水平,联系水平,数学水平和探索水平。从数学语言的角度说,这里的第一种水平,使用的主要是图象词汇;第二种水平,是将所考察的对象及表示它的图象词汇用文字或符号表示出来,建立几种词汇间的联系;第三种水平,是将各种数学词汇发展成以数学理论为“句法”的数学语句;第四种水平,是由数学语句发展成数学文章,即给出问题的数学解答并由此做出进一步探索。在“直线、平面、简单几何体”这章中,上述四种水平的循序发展尤为典型.立体图形是立体几何研究的对象,对它的一般描述表示是按“三维对象(几何模型)--图形--文字--符号”这种程序进行的。其中,图形是将考察对象第一次抽象后的产物,是首先使用的数学词汇,也是形象、直观的语言。完成了由对象到图形的飞跃,才有可能达到后面的水平。因此,加强图形的运用十分重要。本章编写中注意首先强调图象语言,不仅适当增加插图的数量,而且注意提高插图的质量,在图形的典型性、简明性、直观性、概括性及趣味性等方面下功夫,力求充分发挥其作用。文字语言是对图形的描述、解释与讨论,符号语言则是文字语言的简化和再次抽象。显然,首先建立的是图象语言,其次是文字语言,再次是符号语言,最后形成的应是对于对象的三种数学语言的综合描述,即整体认识。有了这种整体认识,三种语言达到融汇贯通的程度,即由一种描述能转化为其他描述,就基本能把握对象了。对于对象的文字和符号描述,必须紧密联系图形,使抽象与直观结合起来,即在图形的基础上发展其他数学语言.本章在阐述定义、定理、公式等重要内容时,先给出图形再以文字和符号描述,注意综合运用几种数学语言,使其优势互补,以期能收到更好的效果,给学生留下更深刻的印象。2.做好由模型到图形的过渡立体几何的一个主要难点,是要由画在二维平面(如书页)上的图形想象出三维空间中的几何关系。对此,即使学习了较长时间立体几何,遇到复杂些的图形也有一定难度。对于初学立体几何的高中生,把平面上的图形在头脑中立体化困难就更大。克服这些困难的一个有效办法,就是做好由模型到图形的过渡。要增加一些由模型画图形的训练,例如画简单几何体(正方体等)的练习可以提前些。通过观察实物或模型并用几何图形表示它们,熟悉空间各种线面关系的表示方法,对于看图是非常重要的。这应作为学习立体几何的图象语言的起始内容。为此,本章在练习和习题中安排了一些“观察图形后填空”或“用符号表示语句并画出图形”类型的题目,希望教学中能重视发挥它们的作用。3.注意两个方向的转化培养空间想象力,有两个不同方向的转化问题.首先是“图形---文字---符号”的转化,即由图形出发,弄清画在平面(书页、黑板等)上的立体图形所表示的空间几何关系,以及未明确表示的隐蔽关系,然后将它们用文字语言加以描述,再以数学符号概括表示,将“有形”的信息变为“无形”的形式.其次是“符号---文字---图形”的转化,即理解符号或文字所表达的空间几何关系,并将它们用图形直观地表示出来,化“无形”为“有形”。因此,本章注意了由不同方向对图形与文字、符号间转化的设计安排,特别在前面部分的练习题和习题中增加了插图的数量,并且加强这种转化的训练。这样做既有利于第一种转化,同时也为实现第二种转化做了必要准备。4.文字语言要准确简明本章的语言叙述力求准确简明。对一个公理和一个定义在文字叙述上作了变化。(1)关于平面的公理2的叙述在《立体几何》课本(必修本)中,公理2是这样叙述的:“如果两个平面有一个公共点,那么它们有且仅有一条通过这个点的公共直线。”关于公理2的这种文字表达上似应改进。读了上述文字,可能初学者会问:“这两个平面的过这个点的公共直线有且仅有一条,此外还有无不过这个点的公共直线?”“这两个平面除这条公共直线外还会有别的公共点吗?”产生这样的疑问的原因是,从字面上看上述公理中“有且仅有一条”的对象单指“通过这个点的公共直线”而不包括其他公共直线。虽然由“通过这个点的公共直线有且仅有一条”可以推出“这两个平面的公共直线有且仅有一条,它通过这个点”,但是这样的推导又需使用另外的公理(公理3),进行这样的推导并非原课本设计的本意。实际上,由课本的上下文及插图可以明显地看出,课本中安排这个公理是要直接明确地告诉学生:“这两个平面的公共直线有且仅有一条,它通过这个点。”鉴于以上所述,本章虽然仍以这个公理为公理2,但是在文字叙述上改写如下:“如果两个平面*有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条直线.”(教科书中加页边注:*在本章中,没有特别说明的“两个平面”,均指不重合的两个平面.)由于新教材在第1章专门安排了“集合”的内容,在第9章的序言中又强调了“空间图形是空间中点的集合”,所以编者认为改写后的公理2,能够结合学生已学的集合概念,简单准确清楚地说明问题,从而克服原教材叙述上的不足.(2)关于两点间球面距离的叙述《立体几何》课本(必修本)对两点的球面距离叙述如下:“在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度.我们把这个弧长叫做两点的球面距离.”仔细阅读可以发现,这里两次出现了“距离”一词.细心人会问:既然“球面距离”定义出现在后,那么这段文字中前面的
本文标题:高二上教材计划
链接地址:https://www.777doc.com/doc-1927812 .html