您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > (北师大版)九年级下:3.3《垂径定理》同步练习及答案
3.3垂径定理一、选择题1.下列语句中,不正确的个数是()①弦是直径②半圆是弧③长度相等的弧是等弧④经过圆内一点可以作无数条直径A.1B.2C.3D.42.如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是()A.40°B.45°C.50°D.60°3.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°4.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°5.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.32D.426.(2014年贵州黔东南6.(4分))如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cmB.3cmC.2cmD.2cm二、填空题7.如图,在⊙O中,直径AB⊥CD于点M,AM=18,BM=8,则CD的长为________.8.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是________度.9.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是________.10.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为________cm.11.(2014•湖南张家界,第16题,3分)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.三、解答题12.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE、AD交于点P.求证:(1)D是BC的中点;(2)△BEC∽△ADC.13.如图,AB是⊙O的直径,C是⌒BD的中点,CE⊥AB于点E,BD交CE于点F.求证:CF=BF.14.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.15.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)参考答案:1、解析直径是弦,但弦不一定是直径故①不正确,弧包括半圆,优弧和劣弧故②正确,等弧是能够重合的弧故③不正确,而经过圆内一点只能作一条直径或无数条直径(圆内一点正好是圆心,故④不正确。)答案C2.解析连接OB,∵∠A=50°,∴∠BOC=2∠A=100°,∵OB=OC,∴∠OCD=∠OBC=12(180°-∠BOC)=40°.答案A3.解析连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°-∠ABD=35°,∴∠BCD=∠A=35°.答案A4.解析如图,∵∠AOC=160°,∴∠ABC=12∠AOC=12×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°-∠ABC=180°-80°=100°.∴∠ABC的度数是:80°或100°.答案D5.解析作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=52-42=3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是正方形,∴OP=32.答案C6.解答:解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选B.7.解析连接OD,∵AM=18,BM=8,∴OD=AM+BM2=18+82=13,∴OM=13-8=5,在Rt△ODM中,DM=OD2-OM2=132-52=12,∵直径AB⊥弦CD,∴AB=2DM=2×12=24.答案248.解析连接OE,∵∠ACB=90°,∴点C在以AB为直径的圆上,即点C在⊙O上,∴∠EOA=2∠ECA,∵∠ECA=2×35°=70°,∴∠AOE=2∠ECA=2×70°=140°.答案1409.解析由勾股定理可知:①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;②当两条直角边长分别为16和12,则直角三角形的斜边长=162+122=20,因此这个三角形的外接圆半径为10.综上所述:这个三角形的外接圆半径等于8或10.答案8或1010.解析连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=12AB=12(9-1)=4,设OA=r,则OD=r-3,在Rt△OAD中,OA2-OD2=AD2,即r2-(r-3)2=42,解得r=256cm.答案25611.解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.12.证明(1)∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴D是BC的中点;(2)∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,即∠CEB=∠CDA=90°,∵∠C是公共角,∴△BEC∽△ADC.13.证明如图.∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠CEB=90°.∴∠2=90°-∠ACE=∠A.又∵C是弧BD的中点,∴∠1=∠A.∴∠1=∠2,∴CF=BF.14.证明(1)∵OD⊥ACOD为半径,∴⌒CD=⌒AD,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠ODB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=12AB,∵OD=12AB,∴BC=OD.15.解如图,连接AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F,则OF⊥AB.∵OA=OB=5m,AB=8m,∴AF=BF=12AB=4(m),∠AOB=2∠AOF,在Rt△AOF中,sin∠AOF=AFAO=0.8=sin53°,∴∠AOF=53°,则∠AOB=106°,∵OF=OA2-AF2=3(m),由题意得:MN=1m,∴FN=OM-OF+MN=3(m),∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,∴AE=FN=3m,DC=AB+2DE.在Rt△ADE中,tan56°=AEDE=32,∴DE=2m,DC=12m.∴S阴=S梯形ABCD-(S扇形OAB-S△OAB)=12(8+12)×3-106360π×52-12×8×3≈20(m2).答U型槽的横截面积约为20m2.
本文标题:(北师大版)九年级下:3.3《垂径定理》同步练习及答案
链接地址:https://www.777doc.com/doc-1929346 .html