您好,欢迎访问三七文档
高三上期物理课时训练(2)一、选择题(本题共14小题;每小题3分,共42分;在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题由多个选项正确.全对的得4分,不全的得2分.)1.如图,在下列不同情形中将光滑小球以相同速率v射出,忽略空气阻力,结果只有一种情形小球不能到达天花板,则该情形是2.如图,在竖直平面内,滑到ABC关于B点对称,且A、B、C三点在同一水平线上。若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则A.B.C.D.无法比较、的大小3.未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示,当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力,为达到目的,下列说法正确的是A、旋转舱的半径越大,转动的角速度就应越大B、旋转舱的半径越大,转动的角速度就应越小C、宇航员质量越大,旋转舱的角速度就应越大D、宇航员质量越大,旋转舱的角速度就应越小12tt12tt12tt1t2tABCDvvvv4.如图,若两颗人造卫星a和b均绕地球做匀速圆周运动,a、b到地心O的距离分别为r1、r2,线速度大小分别为v1、v2。则5.拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小。以下判断正确的是A.a2>a3>a1B.a2>a1>a3C.a3>a1>a2D.a3>a2>a16.土星外层上有一个环,为判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v与该层到土星中心的距离R的关系来判断:A.若vR,则该层是土星的一部分。B.若v2R,则该层是土星的卫星群。C.若v1R,则该层是土星的一部分。D.若v21R,则该层是土星的卫星群。7.登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星。地球和火星是公转视为匀速圆周运动。忽略行星自转影响:根据下表,火星和地球相比行星半径/m质量/kg轨道半径/m地球6.4×1096.0×10241.5×1011火星3.4×1066.4×10202.3×1011A.火星的公转周期较小B.火星做圆周运动的加速度较小C.火星表面的重力加速度较大D.火星的第一宇宙速度较大1221.vrAvr1122B.vrvr21221C.()vrvr21122C.()vrvr8.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100倍。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有A.恒星质量与太阳质量之比B.恒星密度与太阳密度之比C.行星质量与地球质量之比D.行星运行速度与地球运行速度之比9.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律。法国物理学家库仑在研究异种电荷的吸引问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系。已知单摆摆长为l,引力常量为G。地球的质量为M。摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为A.2GMTrlB.2lTrGMC.2GMTrlD.2lTlGM10.过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“52pegb”的发现拉开了研究太阳系外行星的序幕.“52pegb”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的201.该中心恒星与太阳系的质量之比约为A.101B.1C.5D.1011.设地球自转周期为T,质量为M,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R。同一物体在南极和赤道水平面上静止时所受到的支持力之比为A.32224RGMTGMTB.32224RGMTGMTC.23224GMTRGMTD.23224GMTRGMT12.2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度13.土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1μm到10m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km。已知环的外缘颗粒绕土星做圆周运动的周期约为14h,引力常量为6.67×10-11Nm2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)A.9.0×1016kgB.6.4×1017kgC.9.0×1025kgD.6.4×1026kg14.1P、2P为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星1s、2s做匀速圆周运动,图中纵坐标表示行星对周围空间各处物体的引力产生的加速度a,横坐标表示物体到行星中心的距离r的平方,两条曲线分别表示1P、2P周围的a与2r的反比关系,它们左端点横坐标相同,则A、1P的平均密度比2P的大B、1P的第一宇宙速度比2P的小C、1s的向心加速度比2s的大D、1s的公转周期比2s的大二、实验题(2小题,共14分)15.(8分)I.图1是“研究平抛物体运动”的实验装置图,通过描点画出平抛小球的运动轨迹。(1)以下是实验过程中的一些做法,其中合理的有。a.安装斜槽轨道,使其末端保持水平图1b.每次小球释放的初始位置可以任意选择c.每次小球应从同一高度由静止释放d.为描出小球的运动轨迹,描绘的点可以用折线连接(2)实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,测量它们的水平坐标x和竖直坐标y,图2中y-x2图象能说明平抛小球运动轨迹为抛物线的是。(3)图3是某同学根据实验画出的平抛小球的运动轨迹,O为平抛的起点,在轨迹上任取三点A、B、C,测得A、B两点竖直坐标y1为5.0cm、y2为45.0cm,A、B两点水平间距Δx为40.0cm。则平抛小球的初速度v0为m/s,若C点的竖直坐标y3为60.0cm,则小球在C点的速度vC为m/s(结果保留两位有效数字,g取10m/s2)。16.(6分)某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验。所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20m)。完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00kg;(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图(b)所示,该示数为________kg;(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧。此过程中托盘图2x2yOx2yOx2yOx2yOabcdAy1xyOBCΔxy2y3图3秤的最大示数为m;多次从同一位置释放小车,记录各次的m值如下表所示:序号l2345m(kg)1.801.751.851.751.90(4)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为__________N;小车通过最低点时的速度大小为__________m/s。(重力加速度大小取9.80m/s2,计算结果保留2位有效数字)三、计算题(4小题,10+10+12+12共44分)17.如图,位于竖直水平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点。已知h=2m,,s=。取重力加速度大小。(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小。18.同学们参照伽利略时期演示平抛运动的方法制作了如图所示的实验装置.图中水平放置的底板上竖直地固定有M板和N板.M板上部有一半径为R的14圆弧形的粗糙轨道,P为最高点,Q为最低点,Q点处的切线水平,距底板高为H。N板上固定有三个圆环。将质量为m的小球从P处静止释放,小球运动至Q飞出后无阻碍地通过各圆环中心,落到底板上距Q水平距离为L处。不考虑空气阻力,重力加速度为g。求:(1)距Q水平距离为2L的圆环中心到底板的高度;(2)小球运动到Q点时速度的大小以及对轨道压力的大小和方向;(3)摩擦力对小球做的功.2m210/gms19.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性。(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。已知地球质量为M,自转周期为T,万有引力常量为G。将地球视为半径为R、质量均匀分布的球体,不考虑空气的影响。设在地球北极地面称量时,弹簧秤的读数是F0。(a)若在北极上空高出地面h处称量,弹簧秤读数为F1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);(b)若在赤道地面称量,弹簧秤读数为F2,求比值的表达式。(2)设想地球绕太阳公转的圆周轨道半径为r、太阳的半径为Rs和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变。仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的一年将变为多长?24.由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况....)。若A星体质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力大小FA;(2)B星体所受合力大小FB;(3)C星体的轨道半径RC;(4)三星体做圆周运动的周期T。OACBRARBRC高三上期物理课时训练(2)答题卷班级:姓名:考号:二、实验题(2小题,共14分)15、(1)、(2)、、16、(2)、(4)、三.计算题:(44分)解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。17(10分)18(10分)20(12分)19(12分)高三上期物理课时训练(2)参考答案一、选择题题号1234567891011121314答案BABADADBADBBAABCDAC二、实验题15.(1)ac(2)c(3)2.04.016.(2)1.40(4)7.91.4三、计算题17.(1)一小环套在bc段轨道运动时,与轨道之间无相互作用力,则说明下落到b点时的速度,使得小环套做平抛运动的轨迹与轨道bc重合,故有①,②,从ab滑落过程中,根据动能定理可得③,联立三式可得(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得④因为物体滑到c点时与竖直方向的夹角等于(1)问中做平抛运动过程中经过c点时速度与竖直方向的夹角相等,设为,则根据平抛运动规律可知⑤,根据运动的合成与分解可得⑥联立①②④⑤⑥可得18.(1)由平抛运动规律可知,同理:,解得:,则距地面高度为(2)由平抛规律解得对抛出点分析,由牛顿第二定律:,解得bsvt212hgt212bmgRmv20.254sRmh212cmghmv22sin2bbvvghsincvv水平222/4sghvmssh水平由牛顿第三定律知,方向竖直向下。(3)对P点至Q点,由动能定理:解得:19.(1)a.21200.98(R
本文标题:高三上学期周周练2
链接地址:https://www.777doc.com/doc-1932996 .html