您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 高性能LED制造与装备中的关键基础问题研究2011CB013100-G
项目名称:高性能LED制造与装备中的关键基础问题研究首席科学家:刘岩深圳清华大学研究院起止年限:2011.11-2016.8依托部门:深圳市科技工贸和信息化委员会一、关键科学问题及研究内容本项目以高光效、高可靠性、大功率、低成本LED制造和装备所面临的五个关键技术挑战为突破口,围绕以下三个重要科学问题展开研究,突破LED产业链上、中、下游关键制造环节中的瓶颈。科学问题一大尺寸LED晶圆制造中影响光效、光衰的主要缺陷形成机理及抑制。随着LED芯片制造向大尺寸衬底晶圆、低缺陷密度、高光效方向发展,对衬底平坦化、外延生长、芯片制造技术及相关装备提出了一系列挑战。例如,大尺寸晶圆衬底表面必须高质量平坦化,否则其缺陷将延伸到外延层,直接影响外延层的质量。另外,由于晶圆尺寸增大,导致衬底制备和外延生长中晶圆翘曲,缺陷更加严重,导致量子效率下降。这些缺陷会直接影响光效、光衰。如何抑制缺陷、提高量子效率是大功率LED制造的关键问题。其中的技术难点包括:大尺寸同质衬底生成过程中的缺陷控制,MOCVD外延中的缺陷抑制和量子效率调控,超硬衬底材料表面原子级平坦化中的缺陷控制。需要解决的科学问题具体内涵包括:非均匀场和微扰动对衬底和外延层生长动力学过程的影响规律及与缺陷产生的关系,和难加工衬底材料原子级平坦化中的界面行为及缺陷控制原理。需要研究用于大尺寸GaN同质衬底制备的HVPE反应腔和用于大尺寸晶圆外延的MOCVD反应腔的设计方法,以实现反应腔内气体的均匀扩散和混合,温度场的均匀控制,保持层流和均匀的化学反应速率,晶体生长过程中不同沉积速率与反应物质流量控制的精确匹配,以满足外延生长中的波长一致性(偏差≤±5nm)、厚度和组分均匀性(偏差≤5%)等要求;研究超硬难加工衬底材料表面原子级平坦化(表面粗糙度Ra0.1nm)和高效去除(去除速率大于6μm/h)方法,解决衬底材料的平坦化难题。针对这些难点,设置三方面研究内容:1)大尺寸同质衬底生成及缺陷控制原理与装备实现建立适用于HVPE快速生长非平衡态体系的热力学过程和动力学生长模型,考虑化学反应及反应副产物等动力学因素,并利用此模型对外延膜表面的形核、长大及聚结进行深入分析;在反应腔尺寸放大条件下,进行流场温度场均匀性设计,实现GaN厚膜厚度均匀性和晶体质量均匀性控制;研究自支撑GaN厚膜HVPE的生长动力学特性,探索晶格失配、热失配、形核与聚结等对厚膜应力生成和积聚的影响规律,寻找降低或阻断应力和缺陷生成的方法,建立三维应力模型;为解决晶体生长过程中不同沉积速率与反应腔喷头、流量控制精度的匹配,减少多工作点不匹配造成的缺陷增多问题,构建由高温工艺腔联接的多腔分步反应腔系统,以高效率批量获得高质量GaN衬底。拟研究以下五部分内容:(1)HVPE生长非平衡态体系的动力学生长模型及三维应力模型;(2)反应腔尺寸放大条件下的均匀流场温度场设计;(3)GaN厚膜厚度均匀性和晶体质量均匀性控制理论;(4)应力和缺陷生成机理及其降低或阻断的方法;(5)多腔分步HVPE原理、装置及工艺实现。2)超硬衬底低缺陷、高效去除平坦化新原理与装备实现目前,为了提高LED发光效率,降低成本,对蓝宝石、SiC及GaN等LED衬底材料表面平整度、粗糙度以及材料去除速率等提出了更高的要求,其中对表面粗糙度的要求更是接近了物理极限值,对难加工衬底材料表面平坦化提出挑战。针对LED衬底晶圆平坦化,引入极小纳米粒子与接触催化原理相结合的思路,通过探索平坦化中晶圆表面材料的接触催化行为、材料去除机制与平坦化原理,实现难加工材料快速去除和高效平坦化;同时,通过探索极小纳米粒子行为、粒子粒度变化过程中材料去除机制的演变规律、平坦化过程中原子级去除机制,降低微缺陷,实现近极限光滑表面制造。拟研究以下五部分内容:(1)基于接触催化原理的高效平坦化方法;(2)超硬难加工衬底材料的原子尺度去除机制;(3)平坦化中界面行为与损伤控制;(4)基于催化原理的平坦化原理装置及工艺实现;(5)探索GaN衬底制备中的表面平坦化原理。3)MOCVD新型反应腔设计、LED缺陷抑制和量子效率调控针对220lm/W发光效率、6吋及以上外延晶圆的跨尺度(宏-微-纳-亚纳米)制造技术和MOCVD核心装备,探索多场(流场、温度场、化学场、浓度场等)耦合下反应腔的几何构造和气体输运方式与工艺参数的关系,以解决外延生长中膜厚和组分均匀性、波长一致性和生长可重复性难题,探索出大尺寸多片晶圆MOCVD反应腔设计新原理。揭示大尺寸晶圆外延生长中缺陷形成与抑制机理,建立外延生长缺陷与LED内量子效率的本构关系及芯片制造中的缺陷(如晶圆剥离损伤、裂纹、翘曲、键合界面的空洞等)与LED出光效率的本构关系,并解决自生长微纳结构透明电极制造与芯片阈值电压控制等难题,实现大尺寸LED外延片和高效大功率LED芯片制备。主要研究内容:(1)大尺寸MOCVD反应腔设计仿真与实现;(2)大尺寸晶圆外延生长中的缺陷演变机理及控制;(3)LED发光复合机制与量子效率调控;(4)晶圆片剥离/键合界面制造工艺与损伤控制;(5)表面微纳结构透明薄膜电极制造和运用表面粗化以提高出光效率。科学问题二超快响应执行系统多参数耦合机制及精确控制随着LED封装向高效、高品质、高良率方向发展,基于高速轻柔接触的引线键合和喷射粉胶光介质的点胶将成为220lm/W及以上白光LED器件封装的主流趋势之一。针对大功率LED器件对光效提升和封装成本控制的双重要求,LED芯片尺寸将增加到2×2mm2以上,对应的封装尺寸增加到5×5mm2以上,荧光粉胶层厚度小于70μm,透明电极厚度降低到300nm以下,胶滴尺寸和一致性要求将进一步提高,键合力窗口进一步缩小,这对现有的喷射点胶方法和引线键合技术提出了一系列挑战。相应的技术难点是:喷射点胶喷针如何在瞬时短行程内克服超大粘性阻力(1.5-6Pa.s)和表面张力的影响,以大于80g的超高加速度运动,实现纳升级(50纳升)微滴喷出,并且点胶速度达到8点/秒?如何设计与优化轻柔机构的构型与结构并实现短行程高速运动下的柔性接触精准控制,使加速度达到15g以上,接触力10克?如何综合考虑机构变形、芯片厚度等不确定因素影响的运动控制平滑切换?需要解决的科学问题具体内涵为:高粘性流体的微滴形成机理;喷针高加速度运动下的胶体剪切稀化效应;高加速度复合运动下的轻柔键合机理以及执行系统的多参数耦合设计原理。针对上述问题,主要研究:封装装备执行系统的多参数耦合设计及高加速度复合运动生成喷针高加速度运动(80g)是实现高粘度(5Pa.s)荧光粉硅胶喷射的关键,受到驱动系统机电特性、功能材料非线性滞回特性、喷针与运动放大机构机械特性,以及它们之间的延迟、误差串联放大影响,且各种影响因素之间存在静态与动态的关联耦合;此外,在高速运动条件下对硬脆LED焊盘及电极层进行引线键合,对键合设计及其轻柔接触力控制提出了新挑战。为满足高粘度粉胶大面积高一致涂覆和高速轻柔键合的特殊要求,需要建立与分析复杂能场耦合作用下的喷针运动动力学模型,探索热、摩擦、变形、荧光粉硅胶阻尼等各种因素对喷针运动及键合过程的非线性影响机理,设计基于功能材料的新型驱动系统及控制器;研究机构几何、结构和控制参数的综合优化与精确控制方法,实现核心系统的高加速度复合运动生成。主要研究内容如下:(1)粉胶两相光介质流变特性和纳升级微滴形成机制;(2)喷针超高加速度驱动新原理及新系统;(3)高速喷胶阀的多场耦合设计与高速喷胶工艺研究;(4)高速轻柔键合机构构型与综合优化设计理论;(5)高速键合过程力位切换与柔性接触精确控制。科学问题三LED器件热流控制机制与可靠性制约因素耦合规律LED的理想预期寿命超过10万小时,但目前其实际寿命与之相距甚远,主要在于制造过程中制约寿命的因素复杂,且存在使用环境中众多因素的复合影响,而正常应力下的寿命试验耗时过长,很难对它的寿命和可靠性及时做出客观评价;同时直接影响大功率LED器件光效和寿命的重要因素是控制结温和有效散热。其中的技术难点是:高效的热流输运系统跨尺度集成设计与制造,建立复合过应力加速寿命试验方法。需要解决的科学问题具体为:基于微纳结构的微流控热流输运机制,多因素复合过应力耦合规律及其对LED失效的关联机制。针对上述难点,设置以下研究内容:1)跨尺度热输运系统集成制造及LED精简热模型LED散热系统采用跨尺度集成制造,热量在热管中的传输特性、液体在具有表面纳米结构环境中的流动规律、气体凝结特性等会由于器件中的关键结构进入微米甚至纳米尺度后显现出与常规热管不同,这对LED器件的散热有重要影响。研究中将结合表面能分析,建立微热管热量输运模型,依据气液两相流原理研究微热管管壁表面能与工质循环流动特性的关系;研究微热管表面制造微纳结构前后,工质与壁面的接触角和亲/疏水性的变化规律;研究热量在微流场特定的微纳尺度效应和气液两相流影响下的输运规律。研究表面微纳结构对热管工质的毛细牵引力的影响规律,获得基于热力学优化和拓扑优化的导热通道网络优化设计方法;融合微纳制造和表面改性等技术,建立跨尺度热输运系统与基板的集成制造工艺,为大功率LED器件的制造提供理论与技术支撑。针对大功率LED器件封装热阻小于6℃/W,稳定后的结温温升小于20℃等挑战,研究LED封装的热阻计算体系,建立LED封装和应用的精简热模型(CTM),获得系统热阻值的解析解和评价LED封装产品热性能的方法,提出基于蒸汽腔的均热基板方法,解决局部温度场梯度过陡的问题。精简热模型(CTM)的优点在于在选定节点(如结合面、外壳、顶部、底部和焊点)上精确预测封装的温度,比详细模型的计算效率更高。研究内容如下:(1)建立从芯片至环境的传热/散热模型,形成封装结构热特性的评价依据;(2)温度梯度剧烈变化形成机制与抑制措施;(3)提高热量输运效率的微热管设计与制造;(4)跨尺度热输运系统与基板的集成制造。2)LED复合过应力加速寿命试验方法及可靠性制约因素耦合规律针对常规应力下的寿命试验及测试方法很难对器件的寿命和可靠性及时做出客观评价的状况,通过建立基于多因素(电流、温度、湿度、振动、高低温冲击等)复合过应力加速寿命试验方法,建立相应的试验测试系统,开展LED器件加速寿命试验研究,结合非线性建模仿真,建立LED器件可靠性快速准确评估方法;揭示制造过程(工艺)多参数与LED器件可靠性的关联机制,建立动态环境(温度、湿度等)下的应力应变、光学、热学、电学特性的数据库系统,为大功率LED器件的高品质制造提供优化的加速寿命试验和测试方法、仪器装备及基础数据。可靠性实现6000小时室温下额定电流光衰≤3.5%。研究内容如下:(1)LED器件复合过应力加速寿命试验方法;(2)LED器件多参数复合过应力加速寿命试验及测试系统;(3)多因素耦合作用制约可靠性机制;(4)关键制造过程与LED器件可靠性的关联机制;(5)LED器件可靠性快速准确评估方法。二、预期目标1、总体目标面向220lm/W的高性能高可靠的LED制造,揭示LED发光效率、可靠性与制造缺陷及制造因素的关联规律,建立新原理装备、新方法,突破关键技术瓶颈,造就一批从事该领域前沿科学研究的高科技人才,奠定支撑新一代LED制造技术和产业发展的理论和技术基础,为我国在LED制造装备领域实现跨越式发展,成为国际LED制造的主要生产和创新中心提供支撑。2、五年预期目标第一方面:理论研究通过研究,建立面向发光效率220lm/W及以上的LED制造工艺与装备理论体系,争取在以下方面取得突破性进展:(1)融合GaN反应生长动力学、缺陷动力学和热力学基本规律,建立反应腔结构与能场的设计与控制理论;(2)揭示大尺寸衬底晶圆中缺陷形成、演化、分布规律,提出衬底中缺陷的精确控制方法;揭示大尺寸超硬衬底晶圆平坦化中微缺陷形成机制,提出原子级光滑表面高效制造的精确控制方法;揭示大尺寸GaN衬底和外延生长中缺陷控制机理及量子效率调控机制,提出制造大尺寸多片LED晶圆的HVPE、MOCVD反应腔设计理论;提出多腔分步HVPE系统结构。(3)揭示LE
本文标题:高性能LED制造与装备中的关键基础问题研究2011CB013100-G
链接地址:https://www.777doc.com/doc-1935412 .html