您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 高三数学专题复习之解析几何
高三数学专题复习之解析几何浙江省龙游中学叶秋平程伟斌解析几何部分是历年高考的热点与重点.从近几年各地的高考试题分析,解析几何题型一般是一道解答题,二到三道选择题或填空题,分值在26分左右.选择题和填空题考查直线、圆、圆锥曲线的基础知识,解答题重点考查圆锥曲线中的重点知识,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平面几何知识和向量方法.下面将在重点分析2008年上海与新课标地区高考试题以及2009年浙江各地市联考的基础上对2009年高三第二轮专题复习解析几何部分谈谈粗浅的认识与看法.限于水平与能力,若有不当之处,敬请各位专家、同行批评指正!一、2008年上海及新课标地区考点分布统计表:二、2009年《考试说明》的要求(略)三、考点解析(一)、直线与圆部分对直线与圆这部分内容的考查有一个明显趋势:直线与圆的问题常常与其他知识综合考查,如与函数、不等式、三角、导数、概率、平面几何等知识交汇,突出知识间的交汇与融合,突出能力考查.而结合选修4-4《坐标系与参数方程》考查直线与圆的位置关系将成为一个新的亮点.1.考查直线与圆的方程的基本概念,如斜率与倾斜角、距离公式、直线方程、对称问题、轨迹问题、直线与圆位置关系判断等等.如:例1(2008年广东卷理科第11题)经过圆2220xxy的圆心C,且与直线0xy垂直的直线方程是.例2(2008年山东卷理科第11题)已知圆的方程为22680xyxy.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(A)106(B)206(C)306(D)406例3(2008年广东卷理科第13题)已知曲线12CC,的极坐标方程分别为cos3,π4cos002,≥≤,则曲线1C与2C交点的极坐标为.2.线性规划问题随着高考对线性规划考查的深入和细化,线性规划问题越来越脱离其原貌,逐渐呈现出命题形式多样化、手法新颖化、实际背景生活化的趋势.常见类型有:⑴平面区域型问题.如2008年浙江卷理科第17题.高考考点试题分布、题型及分值直线方程江苏9(填空题5分),上海理12,宁夏文10(选择题5分)线性规划海南、宁夏文10,上海文11(填空题4分),广东理4(选择题5分),文12(填空题5分),山东理12(选择题5分),文16(填空题16)圆的方程江苏18(解答题16分),山东理11(选择题5分)直线与圆广东理11(填空题5分),文6选择题5分),山东文11(选择题5分),宁夏文20(解答题12分)圆锥曲线基本问题上海文12(选择题4分),江苏12(填空题5分),山东理10(选择题5分),山东文13(填空题4分),宁夏理11(选择题5分),宁夏文2(选择题5分)直线与椭圆宁夏理20(解答题12分),宁夏文15(填空题5分)直线与抛物线上海文6(填空题4分),山东理22(解答题14分)直线与双曲线上海文20(解答题16分),宁夏理14(填空题5分)综合问题上海理20(解答题16分),广东理18,文20(解答题14分),山东文22(解答题22)参数方程与极坐标广东理13,文13(填空题5分),宁夏理23、文23(解答题10分)⑵目标函数几何意义型问题.有截距型:如2008年广东卷理科第4题;斜率型:如2008年福建卷理科第8题;距离型:如2008年安徽卷理科第7题;其它类型:如2008年上海卷文科第11题.⑶含参数型问题.有约束条件中含有参数(如2008年陕西卷理科第10题);目标函数中含有参数(如如2008年山东卷理科第12题).⑷创新型问题.此类问题比较新颖,且对线性规划的考查不易察觉.如(2009年名校《创新》冲刺卷—理科数学(二),杭州市学军中学命题)随机地把一根长度为6的铁丝截成任意长度的三段,求截成三角形三边的概率.3.直线与圆、圆与圆的位置关系问题直线与圆的位置关系是本部分考查的一个重要内容,也是高考命题的一个热点,主要涉及轨迹问题、直线与圆位置关系判断、切线方程、弦长、夹角等问题.例4(2009年名校《创新》冲刺卷—理科数学(二),杭州市学军中学命题)已知直线l过点(2,4)P且与抛物线211384yxx相切于点P,若圆C满足下列两个条件:①与直线l切于点P;②与y轴相切.则圆C的个数为()A.0个B.1个C.2个D.3个例5(2008年全国Ⅰ卷理科第10题)若直线1xyab通过点(cossin)M,,则()A.221ab≤B.221ab≥C.22111ab≤D.22111ab≥例6(2008年海南、宁夏卷文科第20题)已知m∈R,直线l:2(1)4mxmym和圆C:2284160xyxy.(1)求直线l斜率的取值范围;(2)直线l能否将圆C分割成弧长的比值为12的两段圆弧?为什么?例7(浙江省嘉兴市2009届高三数学学科基础测试卷(理科)第22题)如图,F是椭圆12222byax(ab0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为21.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:330xy相切.(Ⅰ)求椭圆的方程;(Ⅱ)过点A的直线l2与圆M交于PQ两点,且2MQMP,求直线l2的方程.(二)、圆锥曲线部分圆锥曲线在高考中占较大比例,客观题主要考查圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理问题的基本技能、方法.解答题属较难题,往往与平面向量等结合,在考查知识的同时考查逻辑推理、空间想象和运算“三大能力”,考查综合运用知识解决问题的能力.1.考查椭圆、双曲线、抛物线的定义与性质圆锥曲线的定义与性质是本节内容的基石,高考所考题目都会涉及.在2008年高考中,考查定义与性质的有上海卷理科第10题、山东卷文科第13题、上海卷文科第6、12题、山东卷理科第10题、海南、宁夏卷理科第11题.与未进行课改的地区相比,新课程区高考中对离心率的考查热度有所下降,仅有江苏卷第12题.2.考查曲线方程与点的轨迹曲线的方程或点的轨迹是高考解答题的命题对象,其命题方式还是延续传统,即放在解析几何解答题的第一小题.但由于参数方程以作为一块独立的内容放在选修1B模块中,因此与之相关的求轨迹的参数法、交轨法等方法基本不作要求.因此要重点掌握求曲线方程或点的轨迹的定义法、直接法、待定系数法、相关点法等基本方法.3.考查直线与圆锥曲线位置关系我省2009届高三毕业班学生中有部分在初中也是学习新课程的,他们的运算能力、抽象思维能力等等相对欠缺,并且在初中一元二次方程根与系数的关系——韦达定理是不作要求的,这使得对传统的直线与圆锥曲线核心内容“运用数形结合、设而不求、弦长公式及韦达定理解决有关中点、弦长、垂直等知识”的考查有所顾虑.在2008年上海及部分新课程区高考命题中,已经回避这一问题,如上海卷文、理第20题、江苏卷第18题、广东卷理科第18题(文科第20题)、山东卷文科第22题,2009年上海春季高考第19题等等.在2009年浙江各地联考试卷中,也可看出这一变化,如例7是以椭圆为背景考查直线与圆的位置关系.又如例8(金丽衢十二校高三第二次联考数学(理科)试卷)已知点(1,1)A是椭圆22221(0)xyabab上任意一点,12,FF是椭圆的两个焦点,且满足124AFAF.⑴求椭圆的方程及离心率;⑵设,BC是椭圆上两点,直线ABAC、的倾斜角互补,试判断直线BC的斜率是否为定值?并说明理由.简析:⑴椭圆方程为223144xy,离心率63e;⑵不妨设(,)BBBxy,(,)CCCxy,由题意,直线AB存在且不为0,设直线AB的斜率为k,则直线AB的方程为(1)1ykx,与椭圆方程2234xy联立并消去y得222(13)6(1)3610kxkkxkk(※),又(1,1)A在椭圆上,所以1是方程(※)的一个根,方程可化为22(1)(13)3610xkxkk,所以2236131Bkkxk.又直线,ABAC的倾斜角互补,可设直线AC的方程为(1)1ykx,同理可得2236131Ckkxk,所以21231BCkxxk,又(1)1BBykx,(1)1CCykx,所以24()231BCBCkyykxxkk.因此13BCBCBCyykxx.说明:⑴本题也可设直线BC方程为ykxb,与椭圆方程联立消去y后得到关于x的一元二次方程,得到BCxx,BCyy用,kb表示,再由直线,ABAC的倾斜角互补,可得11011CBBCyyxx,最后解出k的值;⑵利用点(1,1)A在椭圆上,所以1是方程(※)的一个根,通过因式分解求出,BCxx,从而合理地避免了必须使用韦达定理解决问题,而又使直线与圆锥曲线的位置关系这一热点得到考查,不难看出命题者煞费苦心!但本题中将(※)左边因式分解也有一定难度,故点A的位置选取还值得斟酌!类似的题目还有:2009年名校《创新》冲刺卷—理科数学(二)的第20题(杭州市学军中学命题)、2009年名校《创新》冲刺卷—理科数学(三)的第21题(慈溪中学命题)、宁波市2008学年第一学期八校联考高三数学(理)第20题和浙江省绍兴市2009年高三数学(理)教学调测试卷第21题等等.不难看出,这极有可能是新课程高考的一个亮点!4.考查数学思想、方法,达到优化解题、简化解题的目的函数与方程思想、数形结合思想、化归与转化思想等是解析几何的思想灵魂,对圆锥曲线的考查一定会考查它们的,因为圆锥曲线大部分都是以方程形式反映出来的.对圆锥曲线上的一些动点,它们相互联系、相互制约,使一些线段的长度及,,,abce之间构成关系,用函数思想处理非常有效.而坐标法是解析几何的核心,处理圆锥曲线问题也必须用到它.如前面的例4可将圆的个数转化为方程解的个数,也可转化为交点的个数.又如例5,既可转化为直线与圆的位置关系,也可用向量的方法,还可用柯西不等式处理等等.例9(浙江省绍兴市2009年高三数学(理)教学调测试卷第21题)如图,椭圆22221xyab的两焦点1F,2F与短轴两端点1B,2B构成211BFB为120,面积为23的菱形.⑴求椭圆的方程;⑵若直线:lykxm与椭圆相交于M、N两点(M、N不是左右顶点),且以MN为直径的圆过椭圆右顶点A.求证:直线l过定点,并求出该定点的坐标.简析:对第⑵小题,若直接将:lykxm与椭圆方程联立得到关于x的一元二次方程,再把“以MN为直径的圆过椭圆右顶点A”用,MN两点的坐标表示出来结合韦达定理求解显得较为烦琐.可将问题转化为由点A引出的两条弦,AMAN互相垂直,证明直线MN过定点.假设直线AM的方程并将它与椭圆方程联立,得到一元二次方程后求出点M的坐标,同理求出点N坐标(两点坐标均用直线AM的斜率k表示),最后表示出直线MN的方程再判断,运算得到简化.四、预测与建议预测2009年浙江省命题重点会体现在以下几个方面:⑴一般来讲,通过线性规划考查确定直线的几何元素及数形结合思想依旧比较明确.直线与圆的位置关系也将以选择或填空的形式出现.直线与圆锥曲线的基础题,涉及定义、标准方程、性质、曲线交点问题以及简单的对称等,以选择、填空题形式出现.双曲线的渐近线以及渐近线的斜率与双曲线离心率的关系值得关注.⑵由于教材对椭圆、双曲线准线要求的下降,直接考查与(椭圆、双曲线)准线相关问题的可能性不大,解答题以直线与椭圆、直线与抛物线为主,直线与圆也有可能,直线与双曲线可能性小.若解答题考查直线与抛物线的位置关系,则易与导数(切线斜率)结合.弦长问题可能放在选修1B模块中考查.⑶直线与圆锥曲线中的范围、最值问题,特别是含有参数的方程,在解题时需要用到分类讨论思想、数形结合思想、化归与转化思想以及建立目标函数处理等等.其背景可以设而不求直接运用韦达定理,也可不用韦达定理直接解方程求出相关点的坐标(用参数表示).⑷以向量、导数为载体或联系相关学科知识,构成知识
本文标题:高三数学专题复习之解析几何
链接地址:https://www.777doc.com/doc-1935927 .html