您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 高中数学奥赛系列辅导资料数列奥赛竞赛练兵
数列奥赛竞赛练兵一、选择题1.(2000年全国高中数学联赛)给定正数p,q,a,b,c,其中p≠q。若p,a,q是等比数列,p,b,c,q是等差数列,则一元二次方程022caxbx()A.无实根B.有两个相等实根C.有两个同号相异实根D.有两个异号实根二、填空题2.(2000年全国高中数学联赛)等比数列3log2a,3log4a,3log8a的公比是_________。三、解答题3.(2000年全国高中数学联赛)设nSn21,n∈N。求1)32()(nnSnSnf的最大值。4.(第五届北京高中数学知识应用竞赛)PC505型文曲星具有选定一组或多组英文单词,根据科学记忆曲线在十四天内进行初记和强化复习的功能。对于每一组单词(词量自定),初记完成后,文曲星提示“立即复习一遍”,然后在第二、第四天、第七天、第九天、第十天、第十四天,“每天复习一遍”该组单词,其他天无须复习,当你在这十四天内,按时正确地拼写这组单词后,文曲星就不再提示对该组单词的记忆。高中《英语》第一册(下)生词表中,UNIT17~UNIT20共99个单词,请你将这99个单词适当分组,利用文曲星的强化复习功能,制定一个在20天内记忆99个单词的计划,把每天需要初记的单词数和每天需要初记和复习的单词总数填入下表中,使得每天初记和复习的单词总数不少于10个,且不多于50个。5.(第十一届美国数学邀请赛(AIME)试题第九题)在一圆周上给定2000个点,取其中一点标记上数1,从这点开始按顺时针方向到第二个点标记上数2,从标记上2的点开始按顺时针方向数到第三个点标记上数3(如图3-3),继续这个过程直到1,2,3,…,1993都被标记到点上,圆周上这些点中有些会标记上不止一个数,也有一些点未标记上任何数,在标上1993的那一点上所有标数中最小的数是什么?6.(第五届北京高中数学知识应用竞赛)电子器件厂兼营生产和销售某种电子器件,流水线启动后每天生产p=500个产品,可销售q=400个产品,未售出的产品存入库房,每件产品在库房内每过一夜将支付存储费用r=0.2元。该流水线在开机生产一段时间后将停机销售,待所有库存产品销完再开机生产,流水线启动的费用是c=1000元(与产品数量无关)。这样,开机生产——停机销售——产品售完构成了一个产销周期。为管理方便,流水线的生产和停机的时间均以天为单位安排。请你设计一个产销周期,即开机生产多少天,停机销售多少天,使得平均每件产品用于流水线启动和存储的费用最少?参考答案1.A由题意知2apq,2b=p+c,2c=q+b,由后二式得32qpb,32qpc。于是有23232)(31)(31apqqppqqppqqpbc。因为p≠q,故2abc,方程的判别式0442bca。因此方程无实根。故选A。2.31设公比为q,由已知条件知,3log3log3log3log4824aaaaq,由比例性质,313log213log3log313log213log3log3log3log)3log(3log)3log(3log222242844284aaaaq。3.解:由已知,对任何n∈N,有)2)(32()32()(1nnnSnSnfnn3464164342nnnnn,又因50346423464nnnn,故对任意x∈N,有50134641)(nnnf。由于501)8(f,故f(n)的最大值为501。4.解:制定方案的原则可以是:第一条:为了能在20天内完成99个单词的复习任务,最后一组初记单词最晚在第7天输入;设第i天初记的单词量为ia,则有下表第二条:易知,只有第7天和第10天初记和复习单词的组数最多,是4组,为了方便,先确定这两天的记忆总数。此题答案不惟一,下面是一个解法。因为10≤每天初记和复习的单词总数≤50,可知1a,4a,5a,6a,7a均小于10。在第7天,507641aaaa,则201a,不妨设201a。于是10764aaa。在第10天,507421aaaa,则102a。据已知,997654321aaaaaaa,得3953aa。在第4天,50431aaa,则203a,在第14天,50651aaa,则205a,于是193a,205a。这样,ia(i=1,2,3,4,5,6,7)均已确定。经验证,符合题目要求,产生下表5.解:从标上数1的那点数起,标记上数1数过的点个数为1,标记上数2的点数为1+2,标记上数3的点数为1+2+3,…。由归纳推理得出,标上数字n的数过的点数符合关系式2)1()(nnnf,由此得到上数1993数过的点个数为:1987021997199319941993211993321,用2000除1987021余数为1021,)1(211021nn无整数解,再考虑末四位数7021,)1(14042)1(217021nnnn,解出得n=118。故可知符合条件的最小整数为118。6.解:设流水线开机生产1n天,停机销售2n天,为了除低存储费用,在产品足够的情况下,每天销售q个产品,则生产期间最高库存量为1)(nqp。由题意,它要在2n天内全部售完,故有anqnqp)1()(21,其中a取值为100,200,300,400。即qaqnqqpn12。这时在生产期间库存产品的存储费用为rnnqp]1)1()[(11,即2)1()(11nnqpr。在停机销售期间库存产品用于存储的费用为rqnnqpqnqpqnqp]})1()[(]2)[(]){[(2111,将qaqnqqpn12代入,上式变为qraqnqpanqp2])][()[(11。于是在整个产销周期内用于启动流水线和存储的总费用为qraqnqpanqpnnqprcS2])][()[(2)1()(1111qaraqqprnqpc2)(2)(21。平均每件产品所负担的流水线启动和存储的费用为1111nBAnpnSs,其中qqprA2)(,pqaraqpcB2)(。当a=100时,1120040340nns;当a=200时,115010140nns;当a=300时,1120040340nns;当a=400时,11240nns。考虑函数xBAxxs1)(,它有最小值,且只有一个最小值点,在最小值点的左侧,函数是单调递减的,在最小值点的右侧,函数是单调递增的。分别取a=100,200,300,400,求得s(x)的最小值点ax,那么111nBAns的最小值在ax的左侧或右侧的相邻可取整数处取得。由以上可得,对于a=400,s最小值在81n或12时取得,经检验,81n时,s取得最小值为0.45,即生产8天,停机销售2天,费用最少。同理,对于200a,s最小值在61n或10时取得,经检验,101n时,s取得最小值为0.452,即生产10天,停机销售3天,费用最少。当a=100,a=300时,s关于1n的表达式相同,所以其最小值在71n或9时取得。经检验,91n时,s取得最小值为0.448,即生产9天,停机销售3天,费用最少。综上所述,这三个方案差距不大,其中生产9天,停机销售3天方案略好些。21世纪教育网
本文标题:高中数学奥赛系列辅导资料数列奥赛竞赛练兵
链接地址:https://www.777doc.com/doc-1944726 .html