您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 园林工程 > 高中数学学案50双曲线
学案50双曲线导学目标:1.了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.自主梳理1.双曲线的概念平面内到两个定点F1、F2(F1F2=2c0)的距离的差的绝对值等于常数2a(2a2c),则点P的轨迹叫________.这两个定点叫双曲线的________,两焦点间的距离叫________.集合P={M||MF1-MF2|=2a},F1F2=2c,其中a、c为常数且a0,c0;(1)当________时,P点的轨迹是________;(2)当________时,P点的轨迹是________;(3)当________时,P点不存在.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a0,b0)y2a2-x2b2=1(a0,b0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a对称性对称轴:坐标轴对称轴:坐标轴对称中心:原点对称中心:原点顶点顶点坐标:A1(-a,0),A2(a,0)顶点坐标:A1(0,-a),A2(0,a)渐近线y=±baxy=±abx离心率e=ca,e∈(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长A1A2=2a;线段B1B2叫做双曲线的虚轴,它的长B1B2=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2=a2+b2(ca0,cb0)3.实轴长和虚轴长相等的双曲线为____________,其渐近线方程为________,离心率e为________.自我检测1.(2011·安徽改编)双曲线2x2-y2=8的实轴长是________________________________.2.已知双曲线x22-y2b2=1(b0)的左、右焦点分别为F1、F2,其中一条渐近线方程为y=x,点P(3,y0)在该双曲线上,则PF1→·PF2→=________.3.(2011·课标全国改编)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为________.4.已知点(m,n)在双曲线8x2-3y2=24上,则2m+4的范围是________.5.已知A(1,4),F是双曲线x24-y212=1的左焦点,P是双曲线右支上的动点,求PF+PA的最小值.探究点一双曲线的定义及应用例1已知定点A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,求另一焦点F的轨迹方程.变式迁移1已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.探究点二求双曲线的标准方程例2已知双曲线的一条渐近线方程是x-2y=0,且过点P(4,3),求双曲线的标准方程.变式迁移2(2010·安庆模拟)已知双曲线与椭圆x29+y225=1的焦点相同,且它们的离心率之和等于145,则双曲线的方程为____________.探究点三双曲线几何性质的应用例3已知双曲线的方程是16x2-9y2=144.(1)求此双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且PF1·PF2=32,求∠F1PF2的大小.变式迁移3已知双曲线C:x22-y2=1.(1)求双曲线C的渐近线方程;(2)已知M点坐标为(0,1),设P是双曲线C上的点,Q是点P关于原点的对称点.记λ=MP→·MQ→,求λ的取值范围.方程思想例(14分)过双曲线x23-y26=1的右焦点F2且倾斜角为30°的直线交双曲线于A、B两点,O为坐标原点,F1为左焦点.(1)求AB;(2)求△AOB的面积;(3)求证:AF2+BF2=AF1+BF1.多角度审题(1)要求弦长AB需要A、B两点坐标或设而不求利用弦长公式,这就需要先求直线AB;(2)在(1)的基础上只要求点到直线的距离;(3)要充分联想到A、B两点在双曲线上这个条件.【答题模板】(1)解由双曲线的方程得a=3,b=6,∴c=a2+b2=3,F1(-3,0),F2(3,0).直线AB的方程为y=33(x-3).设A(x1,y1),B(x2,y2),由y=33x-3,x23-y26=1得5x2+6x-27=0.[4分]∴x1+x2=-65,x1x2=-275,∴AB=1+k2|x1-x2|=1+332·x1+x22-4x1x2=43·3625+1085=1635.[8分](2)解直线AB的方程变形为3x-3y-33=0.∴原点O到直线AB的距离为d=|-33|32+-32=32.∴S△AOB=12AB·d=12×1635×32=1235.[10分](3)证明如图,由双曲线的定义得AF2-AF1=23,BF1-BF2=23,∴AF2-AF1=BF1-BF2,即AF2+BF2=AF1+BF1.[14分]【突破思维障碍】本题利用方程的思想,把过点A的直线方程与双曲线方程联立,从而转化为关于x的一元二次方程,利用韦达定理求解,这种思想在解析几何中经常用到.【易错点剖析】在直线和双曲线相交的情况下解题时易忽视消元后的一元二次方程的判别式Δ0,而导致错解.1.区分双曲线中的a,b,c大小关系与椭圆中a,b,c的大小关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2;双曲线的离心率大于1,而椭圆的离心率e∈(0,1).2.双曲线x2a2-y2b2=1(a0,b0)的渐近线方程是y=±bax,y2a2-x2b2=1(a0,b0)的渐近线方程是y=±abx.3.双曲线标准方程的求法:(1)定义法,根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a、b、c,即可求得方程.(2)待定系数法,其步骤是:①定位:确定双曲线的焦点在哪个坐标轴上;②设方程:根据焦点的位置设出相应的双曲线方程;③定值:根据题目条件确定相关的系数.(满分:90分)一、填空题(每小题6分,共48分)1.已知M(-2,0)、N(2,0),PM-PN=3,则动点P的轨迹是________.2.设点P在双曲线x29-y216=1上,若F1、F2为双曲线的两个焦点,且PF1∶PF2=1∶3,则△F1PF2的周长为________.3.(2011·苏州模拟)过双曲线x2a2-y2b2=1(a0,b0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率为________.4.双曲线x2a2-y2b2=1的左焦点为F1,左、右顶点分别为A1、A2,P是双曲线右支上的一点,则分别以PF1和A1A2为直径的两圆的位置关系是________.5.(2011·山东改编)已知双曲线x2a2-y2b2=1(a0,b0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为________________________________________________________________________.6.(2011·上海)设m是常数,若点F(0,5)是双曲线y2m-x29=1的一个焦点,则m=________.7.设圆过双曲线x29-y216=1的一个顶点和一个焦点,圆心在此双曲线上,则此圆心到双曲线中心的距离为______.8.(2011·南通模拟)已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为________________.二、解答题(共42分)9.(14分)根据下列条件,求双曲线方程:(1)与双曲线x29-y216=1有共同的渐近线,且经过点(-3,23);(2)与双曲线x216-y24=1有公共焦点,且过点(32,2).10.(14分)(2011·广东)设圆C与两圆(x+5)2+y2=4,(x-5)2+y2=4中的一个内切,另一个外切.(1)求圆C的圆心轨迹L的方程;(2)已知点M(355,455),F(5,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.11.(14分)(2010·四川)已知定点A(-1,0),F(2,0),定直线l:x=12,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.(1)求E的方程;(2)试判断以线段MN为直径的圆是否过点F,并说明理由.学案50双曲线答案自主梳理1.双曲线焦点焦距(1)ac双曲线(2)a=c两条射线(3)ac3.等轴双曲线y=±x2自我检测1.4解析∵2x2-y2=8,∴x24-y28=1,∴a=2,∴2a=4.2.03.3解析设双曲线的标准方程为x2a2-y2b2=1(a0,b0),由于直线l过双曲线的焦点且与对称轴垂直,因此直线l的方程为l:x=c或x=-c,代入x2a2-y2b2=1得y2=b2(c2a2-1)=b4a2,∴y=±b2a,故AB=2b2a,依题意2b2a=4a,∴b2a2=2,∴c2-a2a2=e2-1=2,∴e=3.4.(-∞,4-23]∪[4+23,+∞)5.解设双曲线的右焦点为F1,则由双曲线的定义可知PF=2a+PF1=4+PF1,∴PF+PA=4+PF1+PA.∴当满足PF1+PA最小时,PF+PA最小.由双曲线的图象可知当点A、P、F1共线时,满足PF1+PA最小,易求得最小值为AF1=5,故所求最小值为9.课堂活动区例1解题导引求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量.在运用双曲线的定义时,应特别注意定义中的条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支,若是一支,是哪一支,以确保轨迹的纯粹性和完备性.解设F(x,y)为轨迹上的任意一点,因为A,B两点在以C,F为焦点的椭圆上,所以FA+CA=2a,FB+CB=2a(其中a表示椭圆的长半轴).所以FA+CA=FB+CB.所以FA-FB=CB-CA=122+92-122+52=2.所以FA-FB=2.由双曲线的定义知,F点在以A,B为焦点,2为实轴长的双曲线的下半支上.所以点F的轨迹方程是y2-x248=1(y≤-1).变式迁移1解设动圆M的半径为r,则由已知得,MC1=r+2,MC2=r-2,∴MC1-MC2=22,又C1(-4,0),C2(4,0),∴C1C2=8.∴22C1C2.根据双曲线定义知,点M的轨迹是以C1(-4,0)、C2(4,0)为焦点的双曲线的右支.∵a=2,c=4,∴b2=c2-a2=14.∴点M的轨迹方程是x22-y214=1(x≥2).例2解题导引根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选取方程的形式,当焦点不能定位时,则应分两种情况讨论.解决本题的方法有两种:一先定位,避免了讨论;二利用其渐近线的双曲线系,同样避免了对双曲线方程类型的讨论.在共渐近线的双曲线系x2a2-y2b2=λ(参数λ≠0)中,当λ0时,焦点在x轴上;当λ0时,焦点在y轴上.解方法一∵双曲线的一条渐近线方程为x-2y=0,当x=4时,y=2yp=3,∴双曲线的焦点在y轴上.从而有ab=12,∴b=2a.设双曲线方程为y2a2-x24a2=1,由于点P(4,3)在此双曲线上,∴9a2-164a2=1,解得a2=5.∴双曲线方程为y25-x220=1.方法二∵双曲线的一条渐近线方程为x-2y=0,即x2-y=0,∴双曲线的渐近线方程为x24-y2=0.设双曲线方程为x24-y2=λ(λ≠0),∵双曲线过点P(4,3),∴424-32=λ,即λ=-5.∴所求双曲线方程为x24-y2=-5,即y25-x220=1.变式迁移2y24-x212=1解析由于在椭圆x29+y225=1中,a2=25,b2=9,所
本文标题:高中数学学案50双曲线
链接地址:https://www.777doc.com/doc-1944754 .html