您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学第1部分第一章11112应用创新演练
1.右图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A2.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.答案:D3.下列命题:①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是()A.①②B.②③C.①③D.②④解析:①所取的两点与圆柱的轴OO′的连线所构成的四边形不一定是矩形,若不是矩形,则与圆柱母线定义不符.③所取两点连线的延长线不一定与轴交于一点,不符合圆台母线的定义.②④符合圆锥、圆柱母线的定义及性质.答案:D4.如图所示的几何体,关于其结构特征,下列说法不.正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形解析:该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.答案:D5.下列7种几何体:(1)柱体有________;(2)锥体有________;(3)球有________;(4)棱柱有________;(5)圆柱有________;(6)棱锥有________;(7)圆锥有________.解析:由柱、锥、台及球的结构特点易于分析,柱体有a、d、e、f;锥体有b、g;球有c;棱柱有d、e、f;圆柱有a;棱锥为g;圆锥为b.答案:(1)a、d、e、f(2)b、g(3)c(4)d、e、f(5)a(6)g(7)b6.已知ABCD为等腰梯形,两底边为AB、CD,且AB>CD,绕AB所在直线旋转一周,所形成的几何体是由________和________构成的组合体.解析:本题可先画一个等腰梯形ABCD,然后以较长底边AB旋转,不难得到几何体应为两个圆锥和一个圆柱所构成的几何体.答案:两个圆锥圆柱7.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.8.如图(1)所示为一几何体的展开图.(1)沿图(1)中虚线将它们折叠起来,是哪一种几何体?试用文字描述并画出示意图;(2)图(2)可由3个图(1)的折叠体组合而成,请在图(2)中棱长为6cm的正方体ABCD-A1B1C1D1中指出这几个几何体的名称.解:(1)有一条侧棱垂直于底面且底面为正方形的四棱锥,且垂直于底面的侧棱长等于底面正方形的边长,如图甲所示.(2)如图乙所示,由四棱锥A1-CDD1C1,四棱锥A1-ABCD,四棱锥A1-BCC1B1组合而成.
本文标题:高中数学第1部分第一章11112应用创新演练
链接地址:https://www.777doc.com/doc-1946212 .html