您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 其它办公文档 > 高中数学351二元一次不等(组)所表示的平面区域教案新人教B版必修5
13.5.1二元一次不等式(组)所表示的平面区域整体设计教学分析前面已经学习了一元一次不等式(或组)、一元二次不等式及其解法,并且知道相应的几何意义.作为不等式模型,它们在生产、生活中有着广泛的应用.然而,在不等式模型中,除了它们之外,还有二元一次不等式模型.教材通过举例验证和归纳猜想的途径,得出二元一次不等式(组)所表示的平面区域.本节的主要内容有:二元一次不等式(或组)的概念、表示的平面区域及相应的画法.其中,重点是二元一次不等式所表示的平面区域,难点是复杂的二元一次不等式组所表示的平面区域的确定.在教学中,可启发学生观察图象,循序渐进地理解掌握相关概念,以学生探究为主,老师点拨为辅,学生之间分组讨论,交流心得,分享成果,进行思维碰撞,同时可借助计算机等媒体工具来进行动态演示.本节内容在教学中应体现以下几点:①注重探究过程.能正确地画出给定的二元一次不等式(组)表示的平面区域,是学习下节简单线性规划问题的重要基础.由于二元一次不等式组表示的平面区域是各个不等式表示的平面区域的交集,决定了问题的研究应从二元一次不等式所表示的平面区域入手.②注重探究方法.充分理解二元一次不等式解集的几何意义,以不等式解(x,y)为坐标的所有点构成的集合,叫做不等式表示的区域或不等式的图象.③注重探究手段.信息技术可作为探究平台,有条件的学校可利用信息技术手段对直线Ax+By+C=0一侧的点P(x,y)的坐标进行跟踪显示,并将点P(x,y)的坐标代入Ax+By+C中,观察所得值的符号,由学生发现处于直线Ax+By+C=0同侧的点的坐标代入Ax+By+C中符号都相同,直线Ax+By+C=0异侧的点的坐标代入Ax+By+C中符号不同,由此得到判定Ax+By+C>0(<0)表示的是直线Ax+By+C=0哪一侧的平面区域.三维目标1.通过本节探究,使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;能画出二元一次不等式(组)所表示的平面区域.2.通过学生的亲身体验,培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力.3.通过本节学习,着重培养学生深刻理解“数形结合”的数学思想.尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等2数学能力;培养学生学习数学的兴趣和“用数学”的意识,激励学生大胆探索,勇于创新的科学精神.重点难点教学重点:会画出二元一次不等式(组)所表示的平面区域.教学难点:二元一次不等式表示的平面区域的确定及怎样确定不等式Ax+By+C>0(或<0)表示Ax+By+C=0的哪一侧区域.课时安排1课时教学过程导入新课思路1.(直接引入)让学生阅读教材,自己得出二元一次不等式(组)的概念,教师结合多媒体点出本节所要解决的问题,由此展开新课的进一步探究.思路2.(类比导入)可采用与一元一次、一元二次不等式的类比引出,借助“类比”思想,通过与熟悉的一元一次不等式(组)或一元二次不等式(组)比较,引出二元一次不等式(或组)的概念.由此展开新课.推进新课新知探究提出问题让学生阅读教材,并回答什么是二元一次不等式组?其解集是什么?二元一次不等式解集的几何意义是什么?怎样判断二元一次不等式Ax+By+C0表示的是直线Ax+By+C=0哪一侧的平面区域?直线Ax+By+C=0将平面内的点分成了哪几类?活动:教师引导学生得出二元一次不等式(组)的概念后,借助多媒体课件进一步探究二元一次不等式解集的几何意义,以及如何求二元一次不等式在直角坐标平面上表示的区域,以直线l:x+y-1=0为例.如图.3由直线方程的意义可知,直线l上的点的坐标都满足l的方程,并且直线l外的点的坐标都不满足l的方程.事实上,在平面直角坐标系中,所有的点被直线x+y-1=0分为三类:在直线x+y-1=0上;在直线x+y-1=0右上方的平面区域内;在直线x+y-1=0左下方的平面区域内.如(0,2)、(1,3)、(0,5)、(2,2)点的坐标代入x+y-1中,有x+y-1>0,(0,2)、(1,3)、(0,5)、(2,2)点在直线x+y-1=0的右上方.(-1,2)点的坐标代入x+y-1中,有x+y-1=0,(-1,2)点在直线x+y-1=0上.(-1,0)、(0,0)、(0,-2)、(1,-1)点的坐标代入x+y-1中,有x+y-1<0,(-1,0)、(0,0)、(0,-2)、(1,-1)点在直线x+y-1=0的左下方.如图.因此,我们猜想,对直线x+y-1=0右上方的点(x,y),x+y-1>0成立;对直线x+y-1=0左下方的点(x,y),x+y-1<0成立.这个结论不仅对这个具体的例子成立,而且对坐标平面内的任一条直线都成立.一般地,直线l:Ax+By+C=0把坐标平面内不在直线l上的点分为两部分.直线l的同一侧的点的坐标使式子Ax+By+C的值具有相同的符号,并且两侧的点的坐标使Ax+By+C的值的符号相反,一侧都大于0,另一侧都小于0.由于对在直线Ax+By+C=0同一侧的所有点(x,y),实数Ax+By+C的符号相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),由Ax0+By0+C的正、负就可判断Ax+By+C>0表示直线哪一侧的平面区域.当C≠0时,我们常把原点作为这个特殊点去进行判断.如把(0,0)代入x+y-1中,x+y-1<0.这说明x+y-1<0表示直线x+y-1=0左下方原点所在的区域,就是说不等式所表示的区域与原点在直线x+y-1=0的同一侧.如果C=0,直线过原点,原点坐标代入无法进行判断,则可另选一个易计算的点去进行判断.讨论结果:(1)含有两个未知数,并且未知数的最高次数是1的不等式称为二元一次不等式.构成4的不等式组称为二元一次不等式组.(2)二元一次不等式解集的几何意义为:不等式表示的区域或不等式的图象.(3)取点验证.(4)将平面内的点分成了三类:在直线上,在直线左右两侧.应用示例例1(教材本节例1)活动:通过本例要教给学生如何画出二元一次不等式所表示的区域.要严格要求学生按规定画图,并且画图时要细致、正确.注意开区域和闭区域边界的画法.教师要给出示范.直线画成虚线表示不包括边界,画成实线表示包括边界.点评:本例的关键是正确画出直线2x-y-3=0和3x+2y-6=0.阴影部分用短线表示,且短线要画得均匀美观.变式训练画出以下不等式表示的平面区域.(1)x-y+1<0;(2)2x+3y-6>0;(3)2x+5y-10≥0;(4)4x-3y≤12.解:(1)(2)(3)(4)5例2画出不等式组x+3y+6≥0,x-y+20表示的平面区域.活动:教师引导学生正确画出边界直线,注意虚线、实线,同时根据给出的不等式判断出所表示的平面区域,将平面区域的公共部分用阴影表示出来.解:x+3y+6≥0表示直线上及其右上方的点的集合.x-y+2<0表示直线左上方一侧不包括边界的点的集合.如下图阴影部分.点评:在确定这两个点集的交集时,要特别注意其边界线是实线还是虚线,还有两直线的交点处是实点还是空点.变式训练1.画出不等式组x-y+5≥0,x+y≥0,x≤3表示的平面区域.解:不等式x-y+5≥0表示直线x-y+5=0右下方的平面区域,x+y≥0表示直线x+y=0右上方的平面区域,x≤3表示直线x=3左方的平面区域,所以原不等式表示的平面区域如下图中的阴影部分.6点评:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.引导学生观察所画出的图形是个封闭图形,三条直线两两相交的交点是个实点.2.若A为不等式组x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为________.答案:74解析:在平面直角坐标系内画出不等式组所表示的平面区域,以及直线x+y=a从a=-2到1连续变化时,动直线扫过A中的那部分区域.可以看出,该区域是四边形OCDE(如图),且C(-2,0),D(-12,32),E(0,1).因此所求区域的面积为12×2×2-12×1×12=74.例3画出不等式(x+2y+1)(x-y+4)<0表示的平面区域.活动:教师引导学生将题中不等式转化为两个不等式组:x+2y+10,x-y+40或x+2y+10,x-y+40.然后由学生自己操作,教师指导学生严格按要求画图.解:不等式可转化为不等式组:x+2y+10,x-y+40或x+2y+10,x-y+40表示的区域,如下图.7点评:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.变式训练1.在平面直角坐标系中,由满足不等式组3x-y-8≤0,x≥y,x+y≥0的点组成的图形为F,则A(4,4)、B(5,0)、C(2,-1)三点中,在F内(含边界)的所有点是________.答案:A、C解析:由题意,如图,A(4,4)、C(2,-1)在区域内,B(5,0)不在区域内(也可将点的坐标代入不等式组验证).2.已知点A(0,0)、B(1,1)、C(2,0)、D(0,2),其中不在不等式2x+y<4所表示的平面区域内的点是________.答案:C(2,0)解析:不等式可变形为2x+y-4<0,对应的直线为2x+y-4=0.A点是坐标原点,代入2x+y-4得-4<0,即原点A在不等式所表示的区域内.把B、C、D点坐标依次代入2x+y-4,由所得值的正负来判断点是否与A点位于直线2x+y-4=0的同侧或异侧.8可判断出C(2,0)符合条件.(或将点代入验证)点评:此类型的题的解法,就是将点的坐标代入二元一次不等式,若不等式成立,则可得点在二元一次不等式所表示的区域内,否则就不在二元一次不等式所表示的区域内.例4(教材本节例3)活动:教材安排本例的目的是分散难点.首先让学生了解恰当地运用字母表示实际问题中的变量,就可以将复杂的实际问题中的变量关系转化为二元一次不等式组,然后利用下一节知识解决.教学时教师引导学生将题中的数量关系用不等式组表示出来.由于变量x、y题已经给出,学生仅是将文字语言转换为数学语言,难度不大,可由学生自己完成.变式训练甲、乙、丙三种药品中毒素A、B的含量及成本如下表:甲乙丙毒素A(单位/千克)600700400毒素B(单位/千克)800400500成本(元/千克)4911某药品研究所想用x千克甲种药品,y千克乙种药品,z千克丙种药品配成100千克新药,并使新药含有毒素A不超过56000单位,毒素B不超过63000单位.用x、y表示新药的成本M(元),并画出相应的平面区域.解:由已知,得x+y+z=100,∴M=4x+9y+11z=4x+9y+11(100-x-y)=1100-7x-2y.又600x+700y+(100-x-y)≤56000,800x+400y+500(100-x-y)≤63000,9∴2x+3y≤160,3x-y≤130,x+y≤100,x≥0,表示的区域如下图所示:知能训练1.画出不等式2x+y-6<0表示的平面区域.2.某人上午7:00乘汽车以匀速v1千米/时(30≤v1≤100)从A地出发到距300km的B地,在B地不作停留,然后骑摩托车以匀速v2千米/时(4≤v2≤20)从B地出发到距50km的C地,计划在当天16:00至21:00到达C地,设乘汽车、摩托车行驶的时间分别是x、y小时,则在xOy坐标系中,满足上述条件的x、y的范围阴影部分表示正确的是()3.在平面直角坐标系中,不等式组x+y-2≥0,x-y+2≥0,x≤2表示的平面区域的面积是()A.42B.4C.22D.24.若a≥0,b≥0,当且仅当x≥0,y≥0,x+y≤1时,恒有ax+by≤1,则以a,b为坐标点P(a,b)所形成的平面区域的面积等于()10A.12B.π4C.1D.π2
本文标题:高中数学351二元一次不等(组)所表示的平面区域教案新人教B版必修5
链接地址:https://www.777doc.com/doc-1946532 .html