您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 高中物理(人教版)课后跟踪演练第五章曲线运动5-2
课后巩固提升巩固基础1.关于平抛运动的说法正确的是()A.平抛运动是匀变速曲线运动B.平抛物体在t时刻速度的方向与t时间内位移的方向相同C.平抛物体在空中运动的时间随初速度增大而增大D.若平抛物体运动的时间足够长,则速度方向将会竖直向下解析平抛运动的物体只受到重力作用,所以做平抛运动的物体的加速度为重力加速度,所以平抛运动是加速度恒定的变速运动,即平抛运动是匀变速曲线运动,选项A正确;平抛运动物体,t时刻的速度方向为该时刻曲线的切线方向,t时刻的位移方向为从初始位置到t时刻所在位置连线的方向,两者是不同的,选项B错误;平抛运动的时间由竖直分运动的高度h=12gt2决定,即t=2hg,与平抛运动的水平初速度无关,选项C错误;平抛运动的速度为水平速度与竖直速度的合速度,所以平抛运动的速度不会是竖直向下,选项D错误.答案A2.从离地面H高处投出A、B、C三个小球,使A球自由下落,B球以速率v水平抛出,C球以速率2v水平抛出,设三个小球落地时间分别tA、tB、tC,不计空气阻力,则下列说法正确的是()A.tAtBtCB.tAtBtCC.tAtB=tCD.tA=tB=tC解析三个小球在竖直方向上都做自由落体运动,由h=12gt2得t=2hg,选项D正确.答案D3.某同学对着墙壁打网球,假定球在墙面以25m/s的速度沿水平方向反弹,落地点到墙面的距离在10m到15m之间,忽略空气阻力,取g=10m/s2,球在墙面上反弹点的高度范围是()A.0.8m至1.8mB.0.8m至1.6mC.1.0m至1.6mD.1.0m至1.8m解析由题意可知网球做平抛运动的初速度v0=25m/s,水平位移在x1=10m至x2=15m之间,而水平位移x=v0t=v0·2hg,由此得h=g·x22v20,代入数据得h1=0.8m,h2=1.8m,故A选项正确.答案A4.物体在高处以初速度v0水平抛出,落地时速度大小为v,那么该物体在空中运动的时间为()A.(v-v0)/gB.(v+v0)/gC.v2-v20/gD.v2+v20/g解析把速度分解,有vy=v2-v20,又因为vy=gt,可求得时间.答案C5.如图所示,从地面上方某点,将一小球以10m/s的初速度沿水平方向抛出,小球经1s落地,不计空气阻力,g取10m/s2,则可求出()A.小球抛出点离地面的高度为5mB.小球抛出点到落地点的水平距离为10mC.小球落地点的速度大小为20m/sD.小球落地时的速度方向与水平地面成60°角解析由y=12gt2,得h=12gt2=12×10×12m=5m;而水平方向上x=v0t=10×1m=10m;小球落地时竖直分速度vy=gt=10m/s,则v=v2x+v2y=102m/s;落地时速度与水平方向的夹角满足tanθ=vyvx=1010=1,即θ=45°,故A、B选项正确,C、D选项错误.答案AB6.小球以初速度v0与水平方向成α角斜向上抛出,不计空气阻力,球从抛出到落至与抛出点同一高度的过程中,小球速度的变化量为()A.v0sinαB.2v0sinαC.v0cosαD.2v0cosα解析小球在整个过程中,竖直方向上满足vyt=v0sinα,由v=v0+at,得v0sinα=-v0sinα+g·t,则t=2v0sinαg,速度的变化量Δv=g·t=2v0sinα故B选项正确.答案B7.如图所示,在倾角为θ的斜面上A点,以水平速度v0抛出一小球,不计空气阻力,它落到斜面B点所用时间为()A.2v0sinθgB.2v0tanθgC.v0sinθgD.v0tanθg解析设小球从抛出至落到斜面上所用时间为t,在这段时间内水平位移和竖直位移分别为x=v0t,y=12gt2,由几何关系知:tanθ=yx=12gt2v0t=gt2v0,得t=2v0tanθg,故B选项正确.答案B提升能力8.如图所示,在同一竖直平面内,小球a、b从高度不同的两点分别以初速度va和vb沿水平方向抛出,经时间ta和tb后落到与两抛出点水平距离相等的P点,若不计空气阻力,下列关系式正确的是()A.tatbvavbB.tatbvavbC.tatbvavbD.tatbvavb解析平抛运动落到同一水平面上的时间由射出点的高度决定,故A选项正确.答案A9.如图所示,在一次空地演习中,离地H高处的飞机发射一颗炮弹,炮弹以水平速度v1飞出,欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹进行拦截,设飞机发射炮弹时与拦截系统的水平距离为s,若拦截成功.不计空气阻力,则v1、v2的关系应满足()A.v1=v2B.v1=sHv2C.v1=Hsv2D.v1=Hsv2解析当飞机发射的炮弹运动到拦截炮弹正上方时,满足s=v1t,h=12gt2,此过程中拦截炮弹满足H-h=v2t-12gt2,即H=v2t=v2·sv1,则v1=sHv2,故B选项正确.答案B10.(2012·天津一中检测)如图所示,从倾角为θ的斜面上的M点水平抛出一个小球,小球的初速度为v0,最后小球落在斜面上的N点.则(重力加速度为g)()A.可求M、N点之间的距离B.可求小球落到N点时速度的大小C.小球落到N点时速度与斜面成θ角D.当小球速度方向与斜面平行时,小球与斜面间的距离最大解析小球做平抛运动,落到斜面上的N点,如图所示,x=v0t,y=12gt2,且tanθ=yx.由以上三式联立解得x=2v20tanθg,y=2v20tan2θg,t=2v0tanθg,可知落到N点的速度大小vN=v20+gt2,故选项B正确;小球落到N点时与水平方向夹角α,tanα=vyv0=2tanθ,由此式可知α不等于2θ,选项C错误;小球做平抛运动,速度方向时刻变化,当速度与斜面平行时,其沿垂直斜面的分速度为零,即小球距斜面间的距离最远,选项D正确.答案ABD11.(2012·全国新课标)如图所示,x轴在水平地面内,y轴沿竖直方向.图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则()A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大解析平抛运动可分解为水平方向匀速直线运动和竖直方向上的自由落体运动,其速度也就是这两个方向上分速度的矢量和,即v2=v20+(gt)2,所以v0=v2-gt2,故B选项正确.平抛运动可分解为水平匀速直线运动和竖直自由落体运动.在竖直方向上,h=12gt2.飞行时间t=2hg,由此可知,飞行时间由高度决定,由题意可知hbha,所以b物体的飞行时间大于a物体的飞行时间,选项A错误;由于hb=hc,所以b、c两物体的飞行时间相同,选项B正确;在水平上x=v0t,由题意可知xaxb,且飞行时间tatb,所以a物体的初速度大于b物体的水平速度,选项C错误;同理可知,b物体的初速度大于c物体的初速度,选项D正确.答案BD12.如下图所示,一个小球从楼梯顶部以v0=2m/s的水平速度抛出,所有台阶都是高0.2m、宽0.25m,问小球从楼梯顶部抛出后首先落在哪一组台阶上?解析设经过时间t刚好落到某个台阶上,则有x=v0t,y=12gt2,xy=0.250.2可得t=0.32s,x=0.64m.因为0.50m0.64m0.75m,所以小球首先撞到第三级台阶上.答案313.光滑斜面长为a,宽为b,倾角为θ,一小物体从斜面上方左端顶点P水平射入,恰能从右下方端点Q离开斜面.试求其入射的初速度v0.解析利用分解的思路来解,物体从P到Q的时间为t,由平抛运动的规律可得物体沿斜面方向的运动a=12gsinθ·t2水平方向上匀速直线运动,故b=v0t,可求得v0=bgsinθ2a.答案bgsinθ2a14.体育竞赛中的一项运动为掷镖,如图所示,墙壁上落有两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成θ1=53°角,飞镖B与竖直墙壁成θ2=37°角,两者相距为d.假设飞镖的运动为平抛运动,求射出点离墙壁的水平距离.(sin37°=0.6,cos37°=0.8)解析设水平距离为x,飞镖的初速度为v0,落到墙壁时的竖直分速度为vy,vy=v0tanθ=g·t,又v0=xt,联立以上各式可得t2=xgtanθ,则飞镖下落的高度h=12gt2=x2tanθ.因此,飞镖A、B下落的高度分别为hA=x2tan53°=3x8、hB=x2tan37°=2x3,由题意可知hB-hA=d,即2x3-3x8=d,得x=247d.答案247d
本文标题:高中物理(人教版)课后跟踪演练第五章曲线运动5-2
链接地址:https://www.777doc.com/doc-1947821 .html