您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 高中物理专题讲座_必修二_功和功率专题
1专题一.功:◎知识梳理1.物理意义,功是能量转化的量度。一个物体受到力的作用,如果在力的方向上发生一段位移,我们就说这个力对物体做了功。2.公式:W=FScosα,单位:焦耳(J)1焦耳=1牛·米即:1J=IN·M,功是标量。关于功应注意以下几点:①做功的两个要素:有力作用在物体上,且物体在力的方向上发生位移,因此,讲功时明确哪个力做功或明确哪个物体对哪个物体做功。②公式:w=FScosα公式中F为恒力;α为F与位移S的夹角;位移s为受力质点的位移。③功的正负:功是标量,但有正负,当O≤α900时,力对物体做正功:900α≤1800时,力对物体做负功(物体克服某力做功,取正值)。④做功过程总是伴随着能量的转化,从这点上讲,功是能量转化的量度,但“功转化为能量”,“做功产生热量”等说法都是不完备的。⑤功具有相对性,一般取地面参照系,即力作用的那个质点的位移一般指相对地面的位移。⑥摩擦力的功,无论是静摩擦力,还是动摩擦力都可以做正功、负功还可以不做功,一对静摩擦力做功的代数和为零。⑦摩擦力做功与产生势能之间的关系如何?因两个接触面的相对滑动而产生热能的关系:Q=fs,其中,f必须是滑动摩擦力,S必须是两接触面的相对滑动距离(或相对路程)。由此可见,静摩擦力虽然对物体做功.但由于相对位移为零而没有热能产生。【例1】在光滑水平面上有一静止的物体.现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J.则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?专题二.动能、势能1.动能:物体由于运动而具有的能叫动能。(1)动能的定义式:EK=mV2/2,式中m是物体的质量,V是物体的速率,EK是物体的动能。(2)动能是标量_:动能只有大小,没有方向,是个标量。动能定义式中的v是物体具有的速率,动能恒为正值。(3)动能的单位:动能的单位由质量和速度的单位来确定。在国际单位制中,动能的单位是千克·米2/秒2,由于1千克·米2/秒2=1牛1米=1焦,所以动能的单位与功的单位相同。(4)动能具有相对性:物体运动速度的大小,与选定的参照物有关,相对于不同的参照物,物体具有不同的速度,因此也具有不同的动能,一般来讲,我们选地面为参照物。2.势能:由相互作用的物体间的作用力和物体间的相对位置决定的能叫做势能。如重力势能,弹性势能、分子势能、电势能等。(1)重力势能:物体与地球组成的系统中,由于物体与地球间相互作用由它们间相对位置决定的能叫重力势能。○1重力势能的定义式:Ep=mgh式中,m是物体的质量,h是物体距所选取的参考水平面的高度。Ep是物体相对这个所选取的参考水平面的重力势能。○2重力势能有相对性:Ep=mgh与所选取的参考平面(也叫做零重力势能面)有关,因此,在计算重力势能时,必须首先选取零势能面,通常选取地面为重力势能面。在实际问题中,零重力势能面可以任意选取。只要选取的参考面与地面平行即可。为了计算上的方便,一般选取初始状态或末了状态所在的水平面为零2重力势能面。.○3重力势能是标量,但有正负,若物体所处位置在零重力势能面上方,物体的重力势能为正,物体处在零势能面下方,重力势能则为负。可见,Ep的符号仅表示重力势能的相对大小。○4重力势能差值具有绝对性在实际问题中,我们所关心的往往不是物体具有多大重力势能,而是重力势能的变化量。同一个物体,在距离所选取的零重力势能面的高度为h1,和h2时,它们具有的重力势能分别为:Ep1=mgh1,和Ep2=mghz,物体的重力势能的变化量为△EP=Ep2-Ep1=mg(h2-h1)。由于m、g是定值,h2-h1的大小和正负也是确定的,所以重力势能的差值△Ep是确定的。这就是重力势能差值的绝对性,这说明重力势能的差值,即重力势能的变化量与零重力势能的选取无关。○5重力势能的变化,与重力做功的关系当物体从高处向地面降落时,即物体有竖直向下的位移时,重力对物体做正功,由于物体的高度下降,物体的重力势能减少。即重力对物体做多少正功,物体的重力势能就减少多少。当物体从低处向高处上升时,即物体有竖直向上的位移时,重力对物体做负功,由于物体的高度增大,物体的重力势能增加。即重力对物体做多少负功。物体的重力势能就增加多少。重力是保守力,重力对物体做功和路径无关,只与始末高度差有关,重力对物体所做的功,等于物体重力势能变化量的负值。即:W=-△EP,这也给我们一个启示,即恒力对物体做功时,只与起未位置有关,而与路径无关。(2)弹性势能:物体由于发生弹性形变而具有的能,叫做弹性势能,关于弹性势能的大小,只要求定性了解(弹性形变越大,其弹性势能也越大),其计算式:Ep=kx2/2(K为弹簧倔强系数,x为弹簧的伸长量或压缩量);其它不作要求。弹性势能:任何发生弹性形变的物体,内部各部分间的相对位置发生变化就具有势能,这种势能叫弹性势能。【例2】如图所示,劲度系数为K1的轻质弹簧两端分别与质量m1、m2的物体1、2拴接,劲度系数为K2的轻质弹簧上端与物体2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物体1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,物体2的重力势能增加了,物体1的重力势能增加了。1.关于功和能的关系:功是能量转化的量度。(1)能量有不同形式,且不同形式的能量之间可以相互转化。(2)不同形式的能量间的相互转化是通过做功实现的,即做功的过程式就是能量转化的过程。(3)做了多少功,就有多少能量从一种形式转化为另一种形式,即能量转化的多少可用做功的多少来量度。例如,被压缩的水平弹簧具有弹性势能,在弹簧把小球弹出的过程中,小球的动能增加,同时弹簧的弹性势能减少,弹性势能转化为动能,弹簧对小球做多少功就有多少弹性势能转化为动能。2.动能定理:合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。表达式为W=ΔEK.动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。实际应用时,后一种表述比较好操作。不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。动能定理建立起过程量(功)和状态量(动能)间的联系。这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。3(1)求变力做功的几种方法功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:○1等值法等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。○2、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。○3、平均力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。○4.用动能定理求变力做功(2)应用动能定理简解多过程问题。物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化。3.用Q=fS相简解物理问题两个物体相互摩擦而产生的热量Q(或说系统内能的增加量)等于物体之间滑动摩擦力f与这两个物体间相对滑动的路程的乘积,即Q=fS相.利用这结论可以简便地解答高考试题中的“摩擦生热”问题。下面就举例说明这一点。例题评析【例3】如图1,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。【例4】、如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:A、0JB、20πJC、10JD、20J.【例5】一辆汽车质量为105kg,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进100m时,牵引力做的功是多少?【例6】一根弹簧劲度系数为K,水平放置,有一物体向其运动,弹簧被压缩x,求弹力对物体做的功多大?4【例7】、如图材所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长L=3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。【例8】一辆车通过一根跨过定滑轮的轻绳子提升一个质量为m的重物,开始车在滑轮的正下方,绳子的端点A离滑轮的距离是H。车由静止开始向左作匀加速的运动,过了时间t绳子与水平方向的夹角是θ,如图甲的所示。问:在这个过程中,车对重物做了多少功?【例10】如图所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【例11】如图所示,小球自斜面顶端A由静止滑下,在斜面底端B进入半径为R的圆形轨道,小球刚好能通过圆形轨道的最高点C,已知A、B两点间高度差为3R,试求整个过程中摩擦力对小球所做的功。【例12】如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。【例13】、总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力,如图13所示。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少?ABChS1S2α图12S2S1LV0V0图13图35【例14】、如图14所示,在一光滑的水平面上有两块相同的木板B和C。重物A(A视质点)位于B的右端,A、B、C的质量相等。现A和B以同一速度滑向静止的C,B与C发生正碰。碰后B和C粘在一起运动,A在C上滑行,A与C有摩擦力。已知A滑到C的右端面未掉下。试问:从B、C发生正碰到A刚移动到C右端期间,C所走过的距离是C板长度的多少倍?【例15】、如图所示,AB与CD为两个对称斜面,其上部都足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200,半径R=2.0m,一个物体在离弧底E高度为h=3.0m处,以初速度V0=4m/s沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少路程?(g=10m/s2).专题四.机械能守恒定律1.机械能守恒定律的两种表述⑴在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。⑵如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。对机械能守恒定律的理解:①机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v,也是相对于地面的速度。②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。③“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作
本文标题:高中物理专题讲座_必修二_功和功率专题
链接地址:https://www.777doc.com/doc-1948328 .html