您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 高二数学必修2第二章立体几何空间直线与平面的位置关系共线共点共面问题专题总结
立体几何中的共点、共线、共面问题一、共线问题例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直线AA1、BB1、CC1相交于一点O,求证:(1)AB和A1B1、BC和B1C1、AC和A1C1分别在同一平面内;(2)如果AB和A1B1、BC和B1C1、AC和A1C1分别相交,那么交点在同一直线上(如图).例2.点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR∩BD=Y.求证:X、Y、Z三点共线.例3.已知△ABC三边所在直线分别与平面α交于P、Q、R三点,求证:P、Q、R三点共线。二、共面问题例4.直线m、n分别和平行直线a、b、c都相交,交点为A、B、C、D、E、F,如图,求证:直线a、b、c、m、n共面.例5.证明两两相交而不共点的四条直线在同一平面内.已知:如图,直线l1,l2,l3,l4两两相交,且不共点.求证:直线l1,l2,l3,l4在同一平面内例6.已知:A1、B1、C1和A2、B2、C2分别是两条异面直线l1和l2上的任意三点,M、N、R、T分别是A1A2、B1A2、B1B2、C1C2的中点.求证:M、N、R、T四点共面.例7.在空间四边形ABCD中,M、N、P、Q分别是四边上的点,且满足MBAM=NBCN=QDAQ=PDCP=k.(1)求证:M、N、P、Q共面.(2)当对角线AC=a,BD=b,且MNPQ是正方形时,求AC、BD所成的角及k的值(用a,b表示)三、共点问题例8.三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行.答案1、(1)证明:∵AA1∩BB1=O,∴AA1、BB1确定平面BAO,∵A、A1、B、B1都在平面ABO内,∴AB平面ABO;A1B1平面ABO.同理可证,BC和B1C1、AC和A1C1分别在同一平面内.(2)分析:欲证两直线的交点在一条直线上,可根据公理2,证明这两条直线分别在两个相交平面内,那么,它们的交点就在这两个平面的交线上.2证明:如图,设AB∩A1B1=P;AC∩A1C1=R;∴面ABC∩面A1B1C1=PR.∵BC面ABC;B1C1面A1B1C1,且BC∩B1C1=Q∴Q∈PR,即P、R、Q在同一直线上.3解析:∵A、B、C是不在同一直线上的三点∴过A、B、C有一个平面又ABPAB且,.,,lplP则设内内又在既在点.,,,:三点共线同理可证RQPlRlQ4解析:证明若干条直线共面的方法有两类:一是先确定一个平面,证明其余的直线在这个平面里;二是分别确定几个平面,然后证明这些平面重合.证明∵a∥b,∴过a、b可以确定一个平面α.∵A∈a,aα,∴A∈α,同理B∈a.又∵A∈m,B∈m,∴mα.同理可证nα.∵b∥c,∴过b,c可以确定平面β,同理可证mβ.∵平面α、β都经过相交直线b、m,∴平面α和平面β重合,即直线a、b、c、m、n共面.5、解析:证明几条直线共面的依据是公理3及推论和公理1.先证某两线确定平面α,然后证其它直线也在α内.证明:图①中,l1∩l2=P,∴l1,l2确定平面α.又l1∩l3=A,l2∩l3=C,∴C,A∈α.故l3α.同理l4α.∴l1,l2,l3,l4共面.图②中,l1,l2,l3,l4的位置关系,同理可证l1,l2,l3,l4共面.所以结论成立.6、证明如图,连结MN、NR,则MN∥l1,NR∥l2,且M、N、R不在同一直线上(否则,根据三线平行公理,知l1∥l2与条件矛盾).∴MN、NR可确定平面β,连结B1C2,取其中点S.连RS、ST,则RS∥l2,又RN∥l2,∴N、R、S三点共线.即有S∈β,又ST∥l1,MN∥l1,∴MN∥ST,又S∈β,∴STβ.∴M、N、R、T四点共面.7解析:(1)∵MBAM=QDAQ=k∴MQ∥BD,且MBAMAM=1kk∴BDMQ=ABAM=1kk∴MQ=1kkBD又NBCN=PDCP=k∴PN∥BD,且NBCNCN=1kk∴BDNP=CBCN=1kk从而NP=1kkBD∴MQ∥NP,MQ,NP共面,从而M、N、P、Q四点共面.(2)∵MABM=k1,NCBN=k1∴MABM=NCBN=k1,MABMBM=11k∴MN∥AC,又NP∥BD.∴MN与NP所成的角等于AC与BD所成的角.∵MNPQ是正方形,∴∠MNP=90°∴AC与BD所成的角为90°,又AC=a,BD=b,ACMN=BABM=11k∴MN=11ka又MQ=11kb,且MQ=MN,1kkb=11ka,即k=ba.说明:公理4是证明空间两直线平行的基本出发点.已知:平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c.求证:a、b、c相交于同一点,或a∥b∥c.证明:∵α∩β=a,β∩γ=b∴a、bβ∴a、b相交或a∥b.(1)a、b相交时,不妨设a∩b=P,即P∈a,P∈b而a、bβ,aα∴P∈β,P∈α,故P为α和β的公共点又∵α∩γ=c由公理2知P∈c∴a、b、c都经过点P,即a、b、c三线共点.(2)当a∥b时∵α∩γ=c且aα,aγ∴a∥c且a∥b∴a∥b∥c故a、b、c两两平行.由此可知a、b、c相交于一点或两两平行.
本文标题:高二数学必修2第二章立体几何空间直线与平面的位置关系共线共点共面问题专题总结
链接地址:https://www.777doc.com/doc-1948655 .html