您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 高压并联电容器的过电压及防护
课程结业论文高压并联电容器的过电压及防护中国·大庆2011年11月摘要讨论电容器,电容器各种稳态过电压,过电压系数的计算并提出防止电容器,电容器过电压,过电压的对策,包括避雷器的多种结线方式,结线方式的选择。(Abstract:Allkindsofsteady-stateovervoltagecoefficientofcapacitorbankarecalculated,andthecountermeasuresforpreventionofcapacitorovervoltage,includingtheselectionofarresterconnectionmodes,arealsoproposed.Itcanbeusedtoreferencefordesigneinmodeselectionandperformanceimprovement.)-2-关键词:电容器;稳态过电压系数;结线方式;结线方式(Keywords:capacitor;steady-stateovervoltage-coefficient;modeofconnection)目录摘要....................................................................-1-1绪论.................................................................-3-1.1内部过电压的概念.............................................-3-1.2内部过电压现象分析..........................................-4-1.3过电压的倍数及防止措施......................................-4-2稳态电压升高的分析.................................................-4-2.1稳态电压的升高..................................................-4-3电容器组过电压及避雷器...............................................-7--3-3.1电弧重燃过电压..............................................-7-3.2避雷器的选择................................................-8-3.3电容器组断开时的过电压及避雷器的配置...........................-8-4总结......................................................错误!未定义书签。参考文献...............................................................-10-高压并联电容器的过电压及防护1绪论1.1内部过电压的概念内部过电压是由于操作(合闸、拉闸)、事故(接地、断线)或其它原因引起电力系统的状态发生突然变化,将出现从一种稳态转变为另一种稳态的过渡过程,在这个过程-4-中可能产生对系统有危险的过电压。这些过电压是系统内部电磁能的振荡和积聚引起的,所以叫做内部过电压。内部过电压可分为操作过电压和谐振过电压。操作过电压出现在系统操作或故障情况下;谐振过电压是由于电力网中的电容元件和电感元件(特别是带铁芯的铁磁电感元件)参数的不利组合谐振而产生的。内部过电压的幅值约与额定电压成正比,出现内部过电压时,三相电压表有规律快速大幅度摆动,使电压互感器激磁电流增加到几十倍,造成高压保险器熔断,甚至导致电压互感器烧毁。它区别于外部过电压之处,在于外部过电压是一种对设备的直击雷过电压,或是雷击于设备附近在设备上产生的感应过电压。两者过电压均是较高的,都可能引起绝缘弱点的闪络,引起设备绝缘损坏,甚至烧毁。1.2内部过电压现象分析谐振过电压当谐振过电压出现在中性点不接地系统中时,根据相电压的特征,可分为以下三种情况:(1)相电压特征是一相电压低,但不为零,两相电压升高,超过线电压,表针打到头(不超过3倍相电压)或两相电压低但不为零,一相电压高,表针打到头。这种特征的出现是由于存在基波谐振,产生谐振过电压,电压最低相为接地相。(2)相电压特征是三相依次轮流升高,并超过线电压(不超过2倍相电压),表针打到头,三相电压表指针在相同范围内低频摆动。此种情况属于有分频谐振的谐振过电压。(3)相电压特征是三相同时升高,有的相超过线电压,表针打到头,结果可判断为:产生高频过电压。操作过电压操作过电压一般产生在下列情况:合空载线路、切断空载变压器或电抗器、空载变压器突然合闸、开关非全相拉合闸(包括非同期动作)或刀闸、熔断器非全相动作等。1.3过电压的倍数及防止措施根据不同类型的内部过电压,可采取不同的限制措施。电网中装设高压并联电容器以改善功率因数,维持运行电压,进步输变电设备输送容量和降低线路损耗。但如运行电压过高,会危及设备和安全运行。2稳态电压升高的分析2.1稳态电压的升高(1)电容器装置接进电网后引起电网电压升高。设升高的系数为K1,其值按下面方法计算:ΔU≈Uzm×Qc/SdKl=(Ucg+ΔU)/Ucg-5-ΔU为电压升高值(kV);Uzm为电容器装置未投进时母线电压(kV);Qc为接进母线的电容器总容量(Mvar);Sd为电容器装置安装处母线短路容量(MVA);Ucg为电容器正常工作电压。例如某220kV变电站,10kV母线短路容量350MVA,每组串联600kvar,6%电抗器1台,装4组电容器,每组7800kvar,则(2)电容器组接进电抗器后,电容器端电压升高。设升高的系数为K2,其值按下面方法计算。三相电容器回路一般不存在偶次谐波,由于电源变压器有一侧为三角形结线,三次谐波在这个低阻抗线圈中循环活动,不流进电网,只要电容器母线上没有谐波源,很少有三次谐波,电容器组投进运行后应测试一下以便验证。电容器组串联电抗器可消除谐振、改善谐波电压、降低合闸涌流。电容器的选择主要是对占份量最大的5次谐波,设经串联电抗器后恰能消谐,即5ωL-1/(5ωC)=0解得感、容阻抗比为XL=ωL=1/(52ωC)=0.04Xc。为了在所有高次谐波出现时,串联电抗器应足以消谐,使感抗值大于容抗值,可引用可靠系数1.5,则XL=1.5×0.04XC=0.06Xc。电容器端子上电压:即K2=Uc/U=1.064U/U=1.064,电容器端子上电压高出母线电压6.4%。(3)电容器组如不装串联电抗器,则谐波引起电容器端子电压升高的系数为K3,计算式要从傅里叶级数得知,然后计算非正弦电压有效值。式中U1为基波电压分量的有效值;UM为第M次谐波电压分量的有效值。设U1的数值等于额定电压UN,5次谐波电压U的数值为2*5%UN。那么(4)电容器组相间电容差值引起过电压的系数K4可按下面的分析计算。中性点不接地的星形结线电容器组由于三相电容不平衡引起中性点位移,使电压升高。为此应尽量缩小差值,在安装前,应抄录每台电容器电容量并编号,将其分成-6-电容量差不大于5%的三个组。对于单星形或双星形的电容器组,每组如有两个臂,应使对应臂电容接近相等。经仔细操纵可以做到三相电容差值小于2%。此时K4=1+ΔC/(3C+ΔC)=0.05C/(3C+0.05C)+1=1+0.05/(3+0.05)=1.016式中C为每相电容值;ΔC为相电容差值。(5)并联电容器组在运行过程中,由于电容器内部故障被熔断切除后,故障段中剩余的健全电容器端子所承受电压也将升高。设升高的系数为Ks,可按下面分析计算。电容器组无论采用三角形结线或星形结线,每相都可以由一段或多段电容器串联为相当的电压等级,各段又由若干台电容器并联,组成所需容量的电容器组。例如35kV系统可用两段10.5kV的电容器串联后,接成星形;66kV系统可用两段19kV的电容器或三段12.7kV的电容器串联后接成星形。电容器使用台数应大于答应使用的最小并联台数,最小并联台数的计算公式见表1。不同安全系数K时,应小于最大并联台数。每段中电容器最大并联台数Mmax见表2。故障段健全电容器端子上承受的工频过电压计算公式见表1。例如某220kV变电站装设4组每组7800kvar电容器,采用中性点不平衡电流保护的中性点不接地双星形结线。此外,系统电压的调整,可根据需要投切电容器或用计算机控制有载调压变压器的分节开关,由于操纵时间短,规程规定为1.15Ue。对轻负荷时电压升高,规程也另有规定,即不超过1.2~1.3Ue,此值超过过电保护定值,可以自动切除部分或全部电容器。故轻负荷电压升高也不在稳态过电压计算值内。上述各项综合过电压系数K=K1×K2×K3×K4×K5,如电容器组有串联电抗则K3=1。从以上计算得K=1.089×1.064×1×1.016×1.013=1.191.1稍微超过标准,为努力降低三相电容差值,求得合乎规程,尽量选择11kV或12kV代替10.5kV,6.6kV代替6.3kV。表1升压系数K5及最小并联台数的计算公式表并联电容器组接线方式故障段健全电容器端子上承受的工频过电压系数K5=Ugd/Ucg最小并联台数Mmin的计算公式当K=1时的最小并联台数12345-7-三角形及中性点接地星形接线MN/[MN-P(N-1)]≥11(N-1)/3N(11-10K)16899采用三倍零序电压及电压差动保护的中性点不接地单星形接线和采用中性点不平衡电压保护的中性点不接地单星形接线3MN/[3MN-P(3N-2)]≥11(3N-2)/3N(11-10K)4891010采用桥式差电流保护的中性点不接地单星形接线3MN/[3MN-2P(3N-4)]≥11(6N-8)/3N(11-10K)815采用中性点不平衡电流保护的中性点不接地双星形接线6MN/[6MN-P(6N-5)]≥11(6N-5)/6N(11-10K)278910注:Ugd为故障段中健全电容器端子上承受的电压;M为每个串联段中电容器的并联台数;P为串联段中切除故障电容器台数;Ucg为电容器正常工作电压;N为串联段数;K为安全系数,可取0.5~0.75。表2不同K时,每段电容器的最大并联台数额定容量/kF额定电压/kV不同K时的M0.750.5251131147610.511476100113291910.5291930011310710.5963电容器组过电压及避雷器3.1电弧重燃过电压开关分闸过程中,会形成电弧重燃过电压。设开关在电压最大值,电流过零时电弧熄灭,电容器处于充电状态,其电压保持在系统电压的最高值。此时开关触头间的-8-电压,一侧为电容器电压,另一侧为电源电压,电源变为负的最大值时,触头间的电压为电源电压的2倍。假如开关弹跳或分闸速度慢且灭弧性能不好,开关弧隙尽缘恢复的速度低于恢复电压增长的速度,则开关弧隙将被击穿,这时形成电弧重燃,它的过电压可达额定值的4.5~5倍。3.2避雷器的选择只要电源不是排挤线路引进,保护电容器的避雷器最好采用氧化锌避雷器。由于普通阀型避雷器在过电压值低于避雷器的放电电压时,冲击过电压使电容器充电。直到过电压值达到避雷器的放电电压时,阀型避雷器的间隙被击穿,这时电容器将对避雷器放电。由于电容器与避雷器间阻抗很低,雷电流和电容器放电电流的综合值很大,有可能损坏电容器和避雷器,故一般避雷器不能满足电容器的要求。目前多采用具有残压低、通流大、时间响应快、能连续动作、寿命又长的氧化锌避雷器。3.3电容器组断开时的过电压及避雷器的配置投进电容器组产生的合闸过电压一般不大于额定电压的2倍,没有分闸时大,按后者考虑即能满足共同要求。下面分析避雷器的几种接线情况。(1)避雷器接在相—地间,如图1所示,接法简单,使用率高,但某种情况下满足不了尽缘配合的要求。例如电弧
本文标题:高压并联电容器的过电压及防护
链接地址:https://www.777doc.com/doc-1949919 .html