您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 《点集拓扑讲义》第一章-集合论初步-学习笔记
1《点集拓扑学》第一章集合论初步本章介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发,给出集合运算、关系、映射以及集合的基数等方面的知识.至于选择公理,只是稍稍提了一下,进一步的知识待到要用到时再阐述.旨在不会过早地陷入繁难的逻辑困惑之中。这里所介绍的集合论通常称为“朴素的集合论”,如果对集合的理论有进一步的需求,例如打算研究集合论本身或者打算研究数理逻辑,可以去研读有关公理集合论的专著.即令就朴素集合论本身而言,我们也无意使本章的内容构成一个完全自我封闭的体系,主要是我们没有打算重建数系,而假定读者了解有关正整数,整数,有理数,实数的基本知识,以及其中的四则运算,大小的比较(<和≤),和实数理论中关于实数的完备性的论断(任何由实数构成的集合有上界必有上确界)等,它们对于读者决不会是陌生的.此外,对于通常的(算术)归纳原则也按读者早已熟悉的方式去使用,而不另作逻辑上的处理.§1.1集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体.例如我们常说“正在这里听课的全体学生的集合”,“所有整数的集合”等等.集合也常称为集,族,类.2集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点,或成员.集合也可以没有元素.例如平方等于2的有理数的集合,既大于1又小于2的整数的集合都没有任何元素.这种没有元素的集合我们称之为空集,记作.此外,由一个元素构成的集合,我们常称为单点集.集合的表示法:(1)用文句来描述一个集合由哪些元素构成(像前面所作的那样),是定义集合的一个重要方式.(2)描述法:我们还通过以下的方式来定义集合:记号{x|关于x的一个命题P}表示使花括号中竖线后面的那个命题P成立的所有元素x构成的集合.例如,集合{x|x为实数,并且0x1}即通常所谓开区间(0,1).在运用集合这种定义方式时有时允许一些变通,例如集合{是实数}便是集合{,其中x是实数}的简略表示,不难明白这个集合实际上是由全体非负实数构成的.集合表示方式中的竖线“|”也可用冒号“:”或分号“;”来代替.3(3)列举法:也常将一个集合的所有元素列举出来再加上花括号以表示这个集合.例如{}表示由元素构成的集合.如果确实不至于发生混淆,在用列举的办法表示集合时容许某种省略.例如,有时我们可以用{1,2,3,…}表示全体正整数构成的集合,用{1,3,5,…}表示全体正奇数相成的集合.但我们并不鼓励这种做法,因为后面的规律不是很清楚,容易产生误解.我们再三提请读者注意:不管你用任何一种方式定义集合,最重要的是不允许产生歧义,也就是说你所定义的集合的元素应当是完全确定的.在本书中,我们用:表示全体正整数构成的集合,称为正整数集;Z表示全体整数构成的集合,称为整数集;Q表示全体有理数构成的集合,称为有理数集;R表示全体实数构成的集合,称为实数集;并且假定读者熟知这些集合.以下是一些常用的记号:∈:表示元素与集合的关系,如:x∈X,x∈{x}等:表示集合与集合的关系,如:AB(等价于)(这个记号即是通常数学课本中的):表示与上述相反的含义.=:表示两个集合相等,如:A=B(等价于)4以下的这个定理等价于形式逻辑中的相应命题,从直觉着去看也是自明的.定理1.1.1设A,B,C都是集合,则(l)A=A;(2)若A=B,则B=A;(3)若A=B,B=C,则A=C.定理1.1.2设A,B,C都是集合,则(l)AA;(2)若AB,BA,则A=B;(3)若AB,BC,则AC.证明(l)显然.(2)AB意即:若x∈A,则x∈B;BA意即:若x∈B,则x∈A.这两者合起来正好就是A=B的意思.(3)x∈A.由于AB,故x∈B;又由于BC,从而x∈C.综上所述,如果x∈A就有x∈C.此意即AC.因为空集不含任何元素,所以它包含于每一个集合之中.由此我们可以得出结论:空集是惟一的.设A,B是两个集合.如果AB,我们则称A为B的子集;5如果A是B的子集,但A又不等于B,即AB,A≠B,也就是说A的每一个元素都是B的元素,但B中至少有一个元素不是A的元素,这时,我们称A为B的真子集.我们常常需要讨论以集合作为元素的集合,并且为了强调这一特点,这类集合常称为集族.例如,A={{1},{1,2},{1,2,3}}是一个集族.它的三个元素分别为:{1},{1,2},{1,2,3}及.设X是一个集合,我们常用P(X)表示X的所有子集构成的集族,称为集合X的幂集.例如,集合{1,2}的幂集是P={{1},{1,2},{2},}.本章中所介绍的集合论是所谓“朴素的”集合论.在这种集合论中,“集合”和“元素”等基本概念均不加定义而被认作是自明的.正因为如此,历史上曾经产生过一些悖论.而对于绝大多数读者来说了解朴素的集合已是足够的了,只是要求他们在运用的时候保持适当的谨慎,以免导致逻辑矛盾.例如,我们应当知道一个集合本身不能是这个集合一个元素.即:若A是集合则A∈A不成立.这一点是容易理解的.例如,由一些学生组成的一个班级决不会是这个班级里的一名学生.因此,我们不能说“所有集合构成的集合”,因为如果有这样一个“集合”的话,它本身既是一个集合,就应当是这个“所有集合构成的集合”的一个元素了.也因此,我们应当能够了解一个元素a和仅含一个元素a的单点集{a}是两回事,尽管我们有时为了行文的简便而在记号上忽略这个区别.作业:6掌握集合、元素的概念、表示法熟练区分“∈”与“”的意义§1.2集合的基本运算在这一节中我们介绍集合的并、交、差三种基本运算,这三种运算的基本规律,以及它们与集合的包含关系之间的基本关联.定义1.2.1设A与B是两个集合.集合{x|x∈A或x∈B}称为集合A与集合B的并集或并,记作AUB,读为A并B.集合{x|x∈A且x∈B}称为集合A与集合B的交集或交,记作A∩B,读为A交B.若A∩B=,则称集合A与集合B无交或不相交;反之,若A∩B≠,则称集合A与集合B有(非空的)交.集合{x|x∈A且xB}称为集合A与集合B的差集,记作A\B或A-B,读为A差B,或A减B.关于集合的并、交、差三种运算之间,有以下的基本规律.定理1.2.1设A,B,C都是集合.则以下等式成立:(1)幂等律A∪A=AA∩A=A(2)交换律7A∪B=B∪AA∩B=B∩A(3)结合律(A∪B)∪C=A∪(B∪C)(A∩B)∩C=A∩(B∩C)(4)分配律(A∩B)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(A∩C)∪(B∩C)(5)DeMongan律A-(BUC)=((A-B)∩(A-C)A-((B∩C)=(A-B)U(A-C)集合的并、交、差三种运算与集合间的包含关系之间有着以下基本关联.定理1.2.2设A,B是两个集合.下列三个条件等价:(l)AB;(2)A∩B=A;(3)A∪B=B.定义1.2.2设X是一个基础集.对于X的任何一个子集A,我们称X-A为A(相对于基础集X而言)的补集或余集记作.我们应当提醒读者,补集的定义与基础集的选取有关.所以在研究某一个问题时,若用到补集这个概念,在整个工作过程中基础集必须保持不变.8定理1.2.3设X是一个基础集.若A,B为X的子集,则以上证明均只须用到集合的各种定义,此处不证,略去.作业:熟记这两节的各种公式.掌握证明两个集合A=B与AB的基本方法()§1.3关系我们从前在数学的各种科目中学过诸如函数、次序、运算,以及等价等种种概念,它们的一个共同的特点在于给出了某些给定集合的元素之间的某种联系.为了明确地定义它们,我们先定义“关系”,而为了定义关系,又必需先有两个集合的笛卡儿积这个概念.定义1.3.1设X和Y是两个集合.集合{(x,y)|x∈X,y∈Y}称为X与Y的笛卡儿积,记作X×Y,读为X叉乘Y.其中(x,y)是一个有序偶,x称为(x,y)的第一个坐标,y称为(x,y)的第二个坐标.X称为X×Y的第一个坐标集,Y称为X×Y的第二个坐标集.集合X与自身的笛卡儿积X×X称为X的2重(笛卡儿)积,通常简单记作.9有点儿不幸的是我们用于有序偶的记号和用于“开区间”的记号是一样的,有时容易混淆.因此在可能发生混淆的情形下应当加以说明,以避免误解.给定两个集合,通过取它们的笛卡儿积以得到一个新的集合,这个办法对于读者并不陌生.以前学过的数学中通过实数集合构作复数集合,通过直线构作平面时,用的都是这个办法.我们应当注意,一般说来集合X与集合Y的笛卡儿积X×Y完全不同于集合Y与集合X的笛卡儿积Y×X.定义1.3.3设X,Y是两个集合.如果R是X与Y的笛卡儿积X×Y的一个子集,即RX×Y,则称R是从X到Y的一个关系.定义1.3.4设R是从集合X到集合Y的一个关系,即RX×Y.如果(x,y)∈R,则我们称x与y是R相关的,并且记作xRy.如果AX,则Y的子集{y∈Y|存在x∈A使得xRy}称为集合A对于关系R而言的象集,或者简单地称为集合A的象集,或者称为集合A的R象,并且记作R(A),R(X)称为关系R的值域.关系的概念是十分广泛的.读者很快便会看到,以前在另外的数学学科中学过的函数(映射),等价,序,运算等等概念都是关系的特例.这里有两个特别简单的从集合X到集合Y的关系,一个是X×Y本身,另一个是空集.请读者自己对它们进行简单的考查.10定义1.3.5设R是从集合X到集合Y的一个关系,即RX×Y.这时笛卡儿积Y×X的子集{(y,x)∈Y×X|xRy}是从集合Y到集合X的一个关系,我们称它为关系R的逆,并且记作.如果BY,X的子集(B)是集合B的象,我们也常称它为集合B对于关系R而言的原象,或者集合B的R原象.特别,关系的值域(Y)也称为关系R的定义域.定义1.3.6设R是从某个X到集合Y的一个关系,即RX×Y,S是从集合y到集合Z的一个关系,即SY×Z.集合{(x,z)∈X×Y|存在y∈Y使得xRy并且ySz}是笛卡儿积X×Z的一个子集,即从集合X到集合Z的一个关系,此关系称为关系R与关系S的复合或积,记作SR.定理1.3.1设R是从集合X到集合Y的一个关系,S是从集合Y到集合Z的一个关系,T是从集合Z到集合U的一个关系.则:证明(略)定理1.3.2设R是从集合X到集合Y的一个关系,S是从某个Y到集合Z的一个关系.则对于X的任意两个子集A和B,我们有:(1)R(A∪B)=R(A)∪R(B);(2)R(A∩B)R(A)∩R(B);11(3)(SR)(A)=S(R(A)).证明(略)在本节的最后我们要提到有限个集合的笛卡儿积的概念,它是两个集合的笛卡儿积的概念的简单推广.定义1.3.7设是n>1个集合.集合称为的笛卡儿积,并且记作或者其中为有次序的n元素组,(i=1,2,…n)称为n元素组的第i个坐标,(i=1,2,…,n)称为笛卡儿积的第i个坐标集.n>1个集合X的笛卡儿积X×X×…×X常简单地记作n个集合的笛卡儿积的概念读者必然也不会感到陌生,在线性代数中n维欧氏空间作为集合而言就是n个直线(作为集合而言)的笛卡儿积.需要提醒读者的是,如果你在给定的n个集合中交换了集合的次序,一般说来得到的笛卡儿积会是完全不同的集合.至今我们并未定义“0个集合的笛卡儿积”,此事将来再以某种方式补充.(参见§9.1)作业:理解“关系”的概念,掌握“关系”与“映射”的异同,“映射”与“函数”的异同.(映射要求象惟一,关系没要求.函数要求定义域与值域是数域,而映射不一定)12掌握运算乘积的概念与性质掌握集合的笛卡儿积中元素的形式§1.4等价关系初等数论中的同余类的概念,群论中的商群的概念,乃至于解析几何中的自由向量的概念等等都是读者所熟知的.这些概念的精确定义事实上都有赖于本节中所讨论的等价关系的概念.在本书中我们将通过等价关系来定义拓扑空间的商空间.定义1.4.1设X是一个集合.从集合X到集合X的一个关系将简称为集合X中的一个关系.集合X中的关系{(x,x)|x∈X}称为恒同关系,或恒同,对角线
本文标题:《点集拓扑讲义》第一章-集合论初步-学习笔记
链接地址:https://www.777doc.com/doc-1984945 .html