您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 辽宁省营口市大石桥市2016届九年级上学期段考数学试卷及答案解析
2015-2016学年辽宁省营口市大石桥市九年级(上)段考数学试卷一、选择题(每题3分,共30分)1.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,③x2+y﹣3=0,④﹣x=2,⑤x3﹣3x+8=0,⑥x2﹣5x+7=0.其中是一元二次方程的有()A.2B.3C.4D.52.抛物线y=﹣2x2+8x﹣1的顶点坐标为()A.(﹣2,7)B.(﹣2,﹣25)C.(2,7)D.(2,﹣9)3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=94.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=35.三角形的两边长是3和4,第三边长是方程x2﹣12x+35=0的根,则三角形的周长为()A.12B.13C.14D.12或146.若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4B.b=﹣2,c=﹣4C.b=2,c=﹣4D.b=﹣2,c=47.方程x2﹣=0的根的情况为()A.有一个实数根B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根8.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x﹣1)=182C.x(x+1)=182×2D.x(x﹣1)=182×29.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是()A.2017B.2018C.2019D.202010.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②﹣b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.关于x的方程(m﹣2)x|m|+3x﹣1=0是一元二次方程,则m的值为__________.12.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为__________.13.已知关于x的方程x2+mx﹣6=0的一个根为2,则m=__________,另一个根是__________.14.抛物线y=x2+的开口向__________,对称轴是__________.15.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是__________.16.已知x1,x2是方程x2+2013x+1=0的两个根,则(1+2015x1+x12)(1+2015x2+x22)的值为__________.17.二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是__________.18.按下图的程序进行计算,若结果是2006,则x=__________.三、解答题(共96分)19.用指定的方法解方程(1)(x+2)2﹣25=0(直接开平方法)(2)x2+4x﹣5=0(配方法)(3)4(x+3)2﹣(x﹣2)2=0(因式分解法)(4)2x2+8x﹣1=0(公式法)20.把二次函数y=x2﹣3x+4配方成y=a(x﹣k)2+h的形式,并求出它的图象的顶点坐标、对称轴方程,并画出图象.21.已知:关于x的一元二次方程x2+(2m﹣4)x+m2=0有两个相等的实数根,求m的值,并求出方程的解.22.某市为争创全国文明卫生城,2012年市政府对市区绿化工程投入的资金是2000万元,2014年投入的资金是2420万元.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2015年需投入资金多少万元?23.如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1cm/s的速度移动,Q从点B开始沿BC边向C点以2cm/s的速度移动,如果点P、Q分别从A、B同时出发,几秒钟后,△PBQ的面积等于8cm2?24.如图,某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.25.某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个;(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是__________元;这种篮球每月的销售量是__________个;(用含x的代数式表示)(2)若商店准备获利8000元,则销售定价为多少元?商店应进货多少个?26.(14分)抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M的坐标;(2)当y的值大于0时,求x的取值范围;(3)分别求出△BCM与△ABC的面积.2015-2016学年辽宁省营口市大石桥市九年级(上)段考数学试卷一、选择题(每题3分,共30分)1.有下列关于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,③x2+y﹣3=0,④﹣x=2,⑤x3﹣3x+8=0,⑥x2﹣5x+7=0.其中是一元二次方程的有()A.2B.3C.4D.5【考点】一元二次方程的定义.【分析】根据一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①ax2+bx+c=0,不是一元二次方程,①错误;②3x(x﹣4)=0,是一元二次方程,②正确;③x2+y﹣3=0,不是一元二次方程,③错误;④﹣x=2,不是一元二次方程,④错误;⑤x3﹣3x+8=0,不是一元二次方程,⑤错误;⑥x2﹣5x+7=0,是一元二次方程,⑥正确,故选:A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.抛物线y=﹣2x2+8x﹣1的顶点坐标为()A.(﹣2,7)B.(﹣2,﹣25)C.(2,7)D.(2,﹣9)【考点】二次函数的性质.【分析】代入顶点坐标公式,或用配方法将抛物线解析式写成顶点式,确定顶点坐标.【解答】解:∵y=﹣2x2+8x﹣1=﹣2(x﹣2)2+7,∴顶点坐标为(2,7).故选C.【点评】要求学生熟记顶点坐标公式或者配方法的解题思路.3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】方程思想.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=3【考点】二次函数的图象.【分析】已知抛物线解析式为交点式,通过解析式可求抛物线与x轴的两交点坐标;两交点的横坐标的平均数就是对称轴.【解答】解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是x==1.故选A.【点评】此题考查对称轴的性质:抛物线上的两点纵坐标相同时,对称轴是两点横坐标的平均数.5.三角形的两边长是3和4,第三边长是方程x2﹣12x+35=0的根,则三角形的周长为()A.12B.13C.14D.12或14【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长和面积.【解答】解:解方程x2﹣12x+35=0,得x1=5,x2=7,即第三边的边长为5或7.∵1<第三边的边长<7,∴第三边的边长为5.∴这个三角形的周长是3+4+5=12.故选A.【点评】本题考查了三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.6.若二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3),则b、c的值分别是()A.b=2,c=4B.b=﹣2,c=﹣4C.b=2,c=﹣4D.b=﹣2,c=4【考点】二次函数的最值.【专题】函数思想.【分析】根据二次函数y=﹣x2+bx+c的二次项系数﹣1来确定该函数的图象的开口方向,由二次函数y=﹣x2+bx+c的图象的最高点是(﹣1,﹣3)确定该函数的顶点坐标,然后根据顶点坐标公式解答b、c的值.【解答】解:∵二次函数y=﹣x2+bx+c的二次项系数﹣1<0,∴该函数的图象的开口方向向下,∴二次函数y=﹣x2+bx+c的图象的最高点坐标(﹣1,﹣3)就是该函数的顶点坐标,∴﹣1=﹣,即b=﹣2;①﹣3=,即b2+4c﹣12=0;②由①②解得,b=﹣2,c=﹣4;故选B.【点评】本题考查了二次函数的最值.解答此题时,弄清楚“二次函数y=﹣x2+bx+c的图象的最高点坐标(﹣1,﹣3)就是该函数的顶点坐标”是解题的关键.7.方程x2﹣=0的根的情况为()A.有一个实数根B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根【考点】根的判别式.【分析】要判定方程根的情况,首先求出其判别式,然后判定其正负情况即可作出判断.【解答】解:∵x2﹣=0=0,∴△=b2﹣4ac=8﹣8=0,∴方程有两个相等的实数根.故选D.【点评】此题利用了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x﹣1)=182C.x(x+1)=182×2D.x(x﹣1)=182×2【考点】由实际问题抽象出一元二次方程.【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选B.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.9.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是()A.2017B.2018C.2019D.2020【考点】一元二次方程的解.【分析】把x=1代入已知方程求得(a+b)的值,然后将其整体代入所求的代数式并求值即可.【解答】解:∵关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,∴a+b+5=0,∴a+b=﹣5,∴2015﹣a﹣b=2015﹣(a+b)=2015﹣(﹣5)=2020;故选D.【点评】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②﹣b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】首
本文标题:辽宁省营口市大石桥市2016届九年级上学期段考数学试卷及答案解析
链接地址:https://www.777doc.com/doc-1996889 .html