您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 高一指数与对数的综合含精确答案解析
第1页(共10页)高一11.21作业:指数与对数的综合一.选择题(共5小题)1.(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时2.(2015•天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<cB.c<a<bC.a<c<bD.c<b<a3.(2014•河北模拟)设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2C.D.44.(2014•山东)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<15.(2012•河北)当0<x≤时,4x<logax,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)二.填空题(共7小题)6.(2015•福建)若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.7.(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是.9.(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.10.(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=c,这时a的取值的集合为.11.(2006•江西)设f(x)=log3(x+6)的反函数为f﹣1(x),若〔f﹣1(m)+6〕〔f﹣1(n)+6〕=27,则f(m+n)=.12.(2005•北京)设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题第2页(共10页)①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③;④.其中正确的命题序号是.三.解答题(共3小题)13.(2011•上海)已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a•b<0,求f(x+1)>f(x)时的x的取值范围.14.(2010•上海)已知函数f(x)=loga(8﹣2x)(a>0且a≠1)(1)若函数f(x)的反函数是其本身,求a的值;(2)当a>1时,求函数y=f(x)+f(﹣x)的最大值.15.(2006•重庆)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.第3页(共10页)高一11.21作业:指数与对数的综合参考答案与试题解析一.选择题(共5小题)1.(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时【考点】指数函数的实际应用.菁优网版权所有【专题】函数的性质及应用.【分析】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出ek,eb的值,运用指数幂的运算性质求解e33k+b即可.【解答】解:y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,eb=192,当x=22时e22k+b=48,∴e22k==e11k=eb=192当x=33时,e33k+b=(ek)33•(eb)=()3×192=24故选:C【点评】本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.2.(2015•天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<cB.c<a<bC.a<c<bD.c<b<a【考点】对数函数图象与性质的综合应用;奇偶性与单调性的综合.菁优网版权所有【专题】函数的性质及应用.【分析】根据函数的奇偶性得出f(x)=2|x|﹣1=,利用单调性求解即可.【解答】解:∵定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,∴f(﹣x)=f(x),m=0,∵f(x)=2|x|﹣1=,∴f(x)在(0,+∞)单调递增,∵a=f(log0.53)=f(log23),b=f(log25),c=f(2m)=f(0)=0,0<log23<log25,∴c<a<b,第4页(共10页)故选:B【点评】本题考查了对数函数的性质,函数的奇偶性,单调性,计算能力,属于中档题.3.(2014•河北模拟)设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2C.D.4【考点】对数函数的单调性与特殊点.菁优网版权所有【分析】因为a>1,函数f(x)=logax是单调递增函数,最大值与最小值之分别为loga2a、logaa=1,所以loga2a﹣logaa=,即可得答案.【解答】解.∵a>1,∴函数f(x)=logax在区间[a,2a]上的最大值与最小值之分别为loga2a,logaa,∴loga2a﹣logaa=,∴,a=4,故选D【点评】本题主要考查对数函数的单调性与最值问题.对数函数当底数大于1时单调递增,当底数大于0小于1时单调递减.4.(2014•山东)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1【考点】对数函数图象与性质的综合应用.菁优网版权所有【专题】函数的性质及应用.【分析】根据对数函数的图象和性质即可得到结论.【解答】解:∵函数单调递减,∴0<a<1,当x=1时loga(x+c)=loga(1+c)<0,即1+c>1,即c>0,当x=0时loga(x+c)=logac>0,即c<1,即0<c<1,故选:D.【点评】本题主要考查对数函数的图象和性质,利用对数函数的单调性是解决本题的关键,比较基础.5.(2012•河北)当0<x≤时,4x<logax,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【考点】对数函数图象与性质的综合应用.菁优网版权所有【专题】计算题;压轴题.【分析】由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可【解答】解:∵0<x≤时,1<4x≤2第5页(共10页)要使4x<logax,由对数函数的性质可得0<a<1,数形结合可知只需2<logax,∴即对0<x≤时恒成立∴解得<a<1故选B【点评】本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题二.填空题(共7小题)6.(2015•福建)若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于1.【考点】指数函数单调性的应用.菁优网版权所有【专题】开放型;函数的性质及应用.【分析】根据式子f(1+x)=f(1﹣x),对称f(x)关于x=1对称,利用指数函数的性质得出:函数f(x)=2|x﹣a|(a∈R),x=a为对称轴,在[1,+∞)上单调递增,即可判断m的最小值.【解答】解:∵f(1+x)=f(1﹣x),∴f(x)关于x=1对称,∵函数f(x)=2|x﹣a|(a∈R)x=a为对称轴,∴a=1,∴f(x)在[1,+∞)上单调递增,∵f(x)在[m,+∞)上单调递增,∴m的最小值为1.故答案为:1.第6页(共10页)【点评】本题考查了指数型函数的单调性,对称性,根据函数式子对称函数的性质是本题解决的关键,难度不大,属于中档题.7.(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.【考点】对数的运算性质.菁优网版权所有【专题】函数的性质及应用.【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.8.(2015•福建)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是(1,2].【考点】对数函数的单调性与特殊点.菁优网版权所有【专题】函数的性质及应用.【分析】当x≤2时,满足f(x)≥4.当x>2时,由f(x)=3+logax≥4,即logax≥1,故有loga2≥1,由此求得a的范围.【解答】解:由于函数f(x)=(a>0且a≠1)的值域是[4,+∞),故当x≤2时,满足f(x)≥4.当x>2时,由f(x)=3+logax≥4,∴logax≥1,∴loga2≥1,∴1<a≤2,故答案为:(1,2].【点评】本题主要考查分段函数的应用,对数函数的单调性和特殊点,属于基础题.9.(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.【考点】反函数.菁优网版权所有【专题】函数的性质及应用.【分析】由f(x)=2x﹣2+在x∈[0,2]上为增函数可得其值域,得到y=f﹣1(x)在[]上为增函数,由函数的单调性求得y=f(x)+f﹣1(x)的最大值.【解答】解:由f(x)=2x﹣2+在x∈[0,2]上为增函数,得其值域为[],可得y=f﹣1(x)在[]上为增函数,第7页(共10页)因此y=f(x)+f﹣1(x)在[]上为增函数,∴y=f(x)+f﹣1(x)的最大值为f(2)+f﹣1(2)=1+1+2=4.故答案为:4.【点评】本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.10.(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=c,这时a的取值的集合为{2}.【考点】对数的运算性质;函数单调性的性质.菁优网版权所有【专题】计算题;压轴题.【分析】由logax+logay=c可以用x表达出y,转化为函数的值域问题求解.【解答】解:∵logax+logay=c,∴=c∴xy=ac得,单调递减,所以当x∈[a,2a]时,所以,因为有且只有一个常数c符合题意,所以2+loga2=3,解得a=2,所以a的取值的集合为{2}.故答案为:{2}【点评】本题考查函数与方程思想,需要有较强的转化问题的能力.11.(2006•江西)设f(x)=log3(x+6)的反函数为f﹣1(x),若〔f﹣1(m)+6〕〔f﹣1(n)+6〕=27,则f(m+n)=2.【考点】反函数;函数的值.菁优网版权所有【专题】创新题型.【分析】先求出f(x)=log3(x+6)的反函数为f﹣1(x),由〔f﹣1(m)+6〕〔f﹣1(n)+6〕=27,解出m+n,进而求出f(m+n).【解答】解:∵f﹣1(x)=3x﹣6故〔f﹣1(m)
本文标题:高一指数与对数的综合含精确答案解析
链接地址:https://www.777doc.com/doc-1999713 .html