您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高一数学(换底公式及对数运算的应用)
问题提出.(1)(2)(3)loglognaaMnMlogloglog()aaaMNMNlogloglogaaaMMNN(1);(2);(3).log1aalog10alogaNaN1.对数运算有哪三条基本性质?2.对数运算有哪三个常用结论?3.同底数的两个对数可以进行加、减运算,可以进行乘、除运算吗?4.由得,但这只是一种表示,如何求得x的值?181.0113x1.0118log13x知识探究(一):对数的换底公式思考2:你能用lg2和lg3表示log23吗?思考1:假设,则,从而有.进一步可得到什么结论?22log5log3x222log5log3log3xx35x思考4:我们把(a0,且a≠1;c0,且c≠1;b0)叫做对数换底公式,该公式有什么特征?logloglogcacbba思考3:一般地,如果a0,且a≠1;c0,且c≠1;b0,那么与哪个对数相等?如何证明这个结论?loglogccba思考6:换底公式在对数运算中有什么意义和作用?思考5:通过查表可得任何一个正数的常用对数,利用换底公式如何求的值?1.0118log13知识探究(二):换底公式的变式思考1:与有什么关系?logablogba思考2:与有什么关系?lognaNlogaN思考3:可变形为什么?(log)(log)aaMN理论迁移例1计算:(1);(2)(log2125+log425+log85)·(log52+log254+log1258)32log9log278例220世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越.这就是我们常说的里氏震级M,其计算公式为M=lgA-lgA0.其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);例220世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越.这就是我们常说的里氏震级M,其计算公式为M=lgA-lgA0.其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差).(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).例3生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.作业:P68练习:6.P74习题2.2A组:6,11,12.
本文标题:高一数学(换底公式及对数运算的应用)
链接地址:https://www.777doc.com/doc-2000334 .html