您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 高一数学必修2(人教B版)第一章各节同步检测1-1-2-1
1.1.2第1课时一、选择题1.下列几何体中是棱柱的个数为()A.1B.2C.3D.42.下面没有体对角线的一种几何体是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱3.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形4.设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是直平行六面体.以上命题中真命题的个数是()A.0B.1C.2D.35.斜四棱柱侧面最多可有几个面是矩形()A.0个B.1个C.2个D.3个6.长方体中共点的三条棱长分别为a、b、c(abc),分别过这三条棱中的一条及其对棱的对角面的面积分别记为Sa、Sb、Sc,则()A.SaSbScB.SaScSbC.SbScSaD.ScSbSa7.如图,已知长方体ABCD-A1B1C1D1,过BC和AD分别作一个平面交底面A1B1C1D1于EF、PQ,则长方体被分成三个几何体中,棱柱的个数是()A.0B.1C.2D.38.下列图形中,不能折成三棱柱的是()二、填空题9.一个棱柱至少有________个面,有________个顶点,有________条棱.10.一个正方体的表面展开图的五个正方形如图阴影部分,第六个正方形在编号1~5的适当位置,则所有可能的位置编号为________.11.若长方体的长、宽、高分别为5cm、4cm、3cm.把这样的两个长方体全等的面重合在一起组成大长方体,则大长方体的对角线最长为__________.三、解答题12.长方体的三条棱长之比为,全面积为88cm2,求它的对角线长.13.底面是菱形的直平行六面体的高为12cm,两条体对角线的长分别是15cm和20cm,求底面边长.14.正方体的截面可能是什么形状的图形?[分析]本题考查立体几何的空间想象能力,通过尝试、归纳,可以有如下各种肯定或否定性的答案.15.如图所示,正三棱柱的底面边长是4cm,过BC的一个平面交侧棱AA′于点D,若AD的长为2cm,求截面△BCD的面积.1[答案]C[解析]①③⑤为棱柱,故选C.2[答案]A[解析]由几何体对角线的概念可知,选A.3[答案]D[解析]由棱柱的定义可知,只有D正确,分别构造图形如下:A中平面ABCD与平面A1B1C1D1平行,但四边形ABCD与A1B1C1D1相似不全等.B中正六棱柱的相对侧面ABB1A1与EDD1E1平行,但不是底面.C中直四棱柱底面ABCD是菱形.4[答案]B[解析]甲命题符合平行六面体的定义;乙命题是错误的,因为底面是矩形的平行六面体的侧棱可能与底面不垂直;丙命题也是错的,因为直四棱柱的底面不一定是平行四边形,故选B.5[答案]C[解析]如图所示,在斜四棱柱AC′中,若AA′不垂直于AB,则DD′也不垂直于DC,所以四边形ABB′A′和四边形DCC′D′就不是矩形.6[答案]D[解析]依题意:Sa=ab2+c2,Sb=ba2+c2,Sc=ca2+b2,S2c-S2b=a2c2+b2c2-a2b2-b2c2=a2(c2-b2)0(∵abc),∴ScSb,同理SbSa,故ScSbSa.7[答案]D[解析]三个几何体分别是以△A1AP、梯形PABE、△EBB1为底的棱柱,故选D.8[答案]C[解析]C中,两个底面均在上面,因此不能折成三棱柱.9[答案]569[解析]最简单的棱柱是三棱柱,有5个面,6个顶点,9条棱.10[答案]①④⑤[解析]将展开图还原为正方体当第六个正方形在①,④,⑤的位置时,满足题意.11[答案]55[解析]有以下三种重叠方式:在(1)情形下,对角线长l1=52+42+62=77;在(2)情形下,对角线长l2=102+42+32=125;在(3)情形下,对角线长l3=52+82+32=98,∴最长为l2=55.12[解析]设长方体的三条棱长分别为xcm、2xcm、3xcm,由题意,得2(x·2x+x·3x+2x·3x)=88,解得x=2.即长方体的三条棱长分别为2cm,4cm,6cm.故它的对角线长为22+42+62=214cm.13[解析]如图所示,由已知得直平行六面体ABCD-A1B1C1D1中,高AA1=12cm,对角线A1C=20cm,对角线BD1=15cm,在△ACA1中,AC=A1C2-AA21=202-122=16cm,在△BDD1中,BD=BD21-DD21=152-122=9cm,又∵ABCD为菱形,∴AC⊥BD,且AC、BD互相平行,∴AO=4cm,BO=3cm,∴AB=5cm.14[解析]①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;截面三角形不能是直角三角形、钝角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面不能是直角梯形;⑤截面可以是五边形;截面五边形必有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形;⑥截面可以是六边形;截面六边形必有分别平行的边,同时有两个角相等;⑦截面六边形可以是等角(均为120°)的六边形,特别地可以是正六边形.对应截面图形如下图中各图形所示.15[解析]取BC的中点E,连结AE、DE,则AE⊥BC,DE⊥BC,∵AE=32×4=23,DE=(23)2+22=4,∴S=12BC·ED=12×4×4=8cm2.∴截面△BCD的面积为8cm2.
本文标题:高一数学必修2(人教B版)第一章各节同步检测1-1-2-1
链接地址:https://www.777doc.com/doc-2000975 .html