您好,欢迎访问三七文档
1速算与巧算练习题(一)(1)12×45+15×28+30×26+60×11(2)1—3+5—7+9—11+13—…—39+41(3)(1995+1996+1997+1998+1999)÷1997(4)1+2+3+…+10+11+12+11+10+…+3+2+1(5)(1988+1986+1984+…+6+4+2)—(1+3+5+…+1983+1985+1987)(6)(125×99+125)×16(7)3×999+3+99×8+8+2×9+2+9(8)999×999+1999(9)2009×2007—2006×2008+2008×2005—2006×2009(10)251×9+36×174+9472加减速算与巧算练习题1、计算。75+26+2572+67+28116+625+84321+52+6792、下面各题怎样简便就怎样算。56+58+60+62+649+99+999+99992250一73一2714+15+17+80+83+85900一(99+98+97+96)675一(11+13+15+17+19)3、下面各题怎样算简便就怎样算。683+48+152438+86-1381645-(645+290)873-(173-64)674-(38+74)457-(230-143)728-46-22-54-67-78-3337000-85-84-83-82-81-15-16-17-18-19参考答案:1题:答案分别是:126、167、825、10522题:答案分别是:300、2150、294、11106、510、6003题:答案分别是:883、386、710、764、562、370、428、6500习题一一、直接写出计算结果:①1000-547②100000-85426③11111111110000000000-1111111111④78053000000-78053二、用简便方法求和:①536+(541+464)+459②588+264+148③8996+3458+7546④567+558+562+555+563三、用简便方法求差:①1870-280-520②4995-(995-480)③4250-294+94速算与巧算练习11.填空(力求使计算简便)2.判断对错(1)936+397=936+400+3=1336+3=1339(2)1548-1201=1548-1200=348-1=347(3)2507-(1507-793)=2507-1507+793=1000+793=17933.用简便方法计算(1)242-(95+42)(2)163-98(3)399999+39999+3999+399+39+3(4)20+19-18-17+16+15-14-13+……+4+3-2-14.用你认为最简便的方法计算(1)998+99+2997(2)6+78+798+7998+79998(3)360-12-12-12-12-124(4)100000-(79999+7999+799+79+7)(5)175+38+29-38+71(6)657-(269+357)+169(7)100+99+98-97-96-95+94+93+92-91-90-89+……+10+9+8-7-6-5+4+3+2-1参考答案1.2.(1)936+397=936+400+3=1336+3=1339(×)(2)1548-1201=1548-1200=348-1=347(×)(3)2507-(1507-793)=2507-1507+793=1000+793=1793()3.(1)242-(95+42)=242-42-95=200-95=105(2)163-98=163-100+2=63+2=65(3)399999+39999+3999+399+39+3=400000+40000+4000+400+40+4-6=444444-6=444438(4)20+19-18-17+16+15-14-13+……+4+3-2-1=(20+19-18-17)+(16+15-14-13)+……+(4+3-2-1)=4+4+……+4=204.(1)998+99+2997=1000+100+3000-2-1-3=4100-6=4094(2)6+78+798+7998+79998=8+80+800+8000+80000-2×5=88888-10=88878(3)360-12-12-12-12-12=360-(12+12+12+12+12)=360-12×5=360-60=300(4)100000-(79999+7999+799+79+7)=100000-(80000+8000+800+80+8-5)=100000-88883=11117(5)175+38+29-38+71=175+38-38+29+71=175+29+71=175+(29+71)=175+100=275(6)657-(269+357)+169=657-(357+269)+169=657-357-269+169=300-(100+169)+169=300-100-169+169=200-169+169=200(7)100+99+98-97-96-95+94+93+92-91-90-89+……+10+9+8-7-6-5+4+3+2-1=(100+99+98-97-96-95)+……+(10+9+8-7-6-5)+(4+3+2-1)=9+9+……+9+8=9×16+8=152常用的巧算和速算方法【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。5例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1+2+……+99+100所以,1+2+3+4+……+99+100=101×100÷2=5050。“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2=2499。这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5尺布,最后一天织了1尺,一共织了30天。问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。这一解法,用现代的算式表达,就是1匹=4丈,1丈=10尺,90尺=9丈=2匹1丈。(答略)张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30天所织的布都加起来,算式就是5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这个式子反过来,则算式便是1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”6这一特点,那么,就会出现下面的式子:所以,加得的结果是6×30=180(尺)但这妇女用30天织的布没有180尺,而只有180尺布的一半。所以,这妇女30天织的布是180÷2=90(尺)可见,这种解法的确是简单、巧妙和饶有趣味的。【分组计算】一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。例如:求1到10亿这10亿个自然数的数字之和。这道题是求“10亿个自然数的数字之和”,而不是“10亿个自然数之和”。什么是“数字之和”?例如,求1到12这12个自然数的数字之和,算式是1+2+3+4+5+6+7+8+9+1+0+1+1+1+1+2=5l。显然,10亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将它们分组:0和999,999,999;1和999,999,998;2和999,999,997;3和999,999,996;4和999,999,995;5和999,999,994;………………依次类推,可知除最后一个数,1,000,000,000以外,其他的自然数与添上的0共10亿个数,共可以分为5亿组,各组数字之和都是81,如0+9+9+9+9+9+9+9+9+9=811+9+9+9+9+9+9+9+9+8=81………………最后的一个数1,000,000,000不成对,它的数字之和是1。所以,此题的计算结果是(81×500,000,000)+1=40,500,000,000+1=40,500,000,001【由小推大】“由小推大”是一种数学思维方法,也是一种速算、巧算技巧。遇到有些题数目多,关系复杂时,我们可以从数目较小的特殊情况入手,研究题目特点,找出一般规律,再推出题目的结果。例如:(1)计算下面方阵中所有的数的和。7这是个“100×100”的大方阵,数目很多,关系较为复杂。不妨先化大为小,再由小推大。先观察“5×5”的方阵,如下图(图4.1)所示。容易看到,对角线上五个“5”之和为25。这时,如果将对角线下面的部分(右下部分)用剪刀剪开,如图4.2那样拼接,那么将会发现,这五个斜行,每行数之和都是25。所以,“5×5”方阵的所有数之和为25×5=125,即53=125。于是,很容易推出大的数阵“100×100”的方阵所有数之和为1003=1,000,000。(2)把自然数中的偶数,像图4.3那样排成五列。最左边的叫第一列,按从左到右的顺序,其他叫第二、第三……第五列。那么2002出现在哪一列:因为从2到2002,共有偶数2002÷2=1001(个)。从前到后,是每8个偶数为一组,每组都是前四个偶数分别在第二、三、四、五列,后四个偶数分别在第四、三、二、一列(偶数都是按由小到大的顺序)。所以,由1001÷8=125…………1,可知这1001个偶数可以分为125组,还余1个。故2002应排在第二列。【凑整巧算】用“凑整方法”巧算,常常能使计算变得比较简便、快速。例如(1)99.9+11.1=(90+10)+(9+1)+(0.9+0.1)=111(2)9+97+998+6=(9+1)+(97+3)+(998+2)=10+100+1000=1110(3)125+125+125+125+120+125+125+125=155+125+125+125+(120+5)+125+125+125-5=125×8-5=1000-5=995【巧妙试商】除数是两位数的除法,可以采用一些巧妙试商方法,提高计算速度。(1)用“商五法”试商。当除数(两位数)的10倍的一半,与被除数相等(或相近)时,可以直接试商“5”。如70÷14=5,125÷25=5。当除数一次不能除尽被除数的时候,有些可以用“无除半商五”。“无除”指被除数前两位不够除,“半商五”指若被除数的前两位恰好等于(或接近)除数的一半时,则可直接商“5”。例如1248÷24=52,2385÷45=538(2)同头无除商八、九。“同头”指被除数和除数最高位上的数字相同。“无除”仍指被除数前两位不够除。这时,商定在被除数高位数起的第三位上面,再直接商8或商9。5742÷58=99,4176÷48=87。(3)用“商九法”试商。当被除数的前两位数字临时组成的数小于除数,且前三位数字临时组成的数与除数之和,大于或等于除数的10倍时,可以一次定商为“9”。一般地说,假如被除数为m,除数为n,只有当9n≤m<10n时,n除m的商才是9。同样地,10n≤m+n<11n。这就是我们上述做法的根据。例如4508÷49=92,6480÷72=90。(4)用差数试商。当除数是11、12、13…………18和19,被除数前两位又不够除的时候,可以用“差数试商法”,即根据被除数前两位临时组成的数与除数的差来试商的方法。若差数是1或2,则初商为9;差数是3或4,则初商
本文标题:速算与巧算练习题
链接地址:https://www.777doc.com/doc-2018633 .html