您好,欢迎访问三七文档
中国科学院生物物理研究所生物大分子国家重点实验室王志珍导读您知道蛋白质折叠吗?这是一个很新的词。新到什么程度?您可以上网到著名的不列颠百科全书网站检索一下proteinfolding(即蛋白质折叠),还没有相应的解释。您知道“蛋白质折叠病”吗?疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。就是相关蛋白质的三维空间结构异常。这种三维空间结构异常是由于致病蛋白质分子通过分子间作用感染正常蛋白质而造成的。请注意,致病蛋白质分子与正常蛋白质分子的构成完全相同,只是空间结构不同。您知道蛋白质折叠有多复杂吗?美国“科学美国人”曾经载文称,用当今最快的计算机模拟计算蛋白质折叠,要花一百年!而当今最快的计算机已经达到每秒几万亿甚至十几万亿次浮点运算的高速了。对于生命奥秘的探索,将贯穿新世纪乃至新千年人类的历史。而蛋白质折叠,就是其中的一大课题。请您认真阅读王志珍研究员的这篇文章。不要害怕肽键、肽链、分子伴侣这类专业名词,因为它们与您、您的健康息息相关。读完这篇文章,这些专业名词将成为您的朋友。提要研究蛋白质的折叠,是生命科学领域的前沿课题之一。蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构,包括二级结构和三级结构二个主要层次。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。通过“蛋白质结构预测”破译“第二遗传密码”,是蛋白质研究最后几个尚未揭示的奥秘之一。天津大学和中国科学院生物物理所的科学家已经做出了优秀的研究成果。他们预测,蛋白质的种类虽然成千上万,但它们的折叠类型却只有有限的650种左右。我国科学家在分子伴侣和折叠酶方面有特色的研究成果,也已经赢得了国际同行的注意。外界环境的变化可以导致蛋白质空间结构的破坏和生物活性的丧失,但却并不破坏它的一级结构(氨基酸序列),这称为蛋白质的变性。变性的蛋白质往往成为一条伸展的肽链,在一定的条件下可以重新折叠成原有的空间结构并恢复原有的活性。对蛋白质变性作用的认识是我国科学家吴宪在三十年代首先提出的。蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。造成疯牛病的Prion病蛋白可以感染正常蛋白而在蛋白质之间传染。研究蛋白质的折叠问题不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。1分子生物学的中心法则五十年代初运用X射线衍射技术解出了生命遗传物质脱氧核糖核酸(DNA)分子的三维空间结构,阐明了生物遗传的分子基础,揭示了这个最主要的生命活动的本质,从而开创了在分子水平上认识生命现象的新学科———分子生物学。分子生物学的出现是经典生物学转变成近代生物学的里程碑。尽管自然界的生物物种千千万万,生命现象繁杂纷飞,在分子水平研究生命,使我们认识到各种生命现象的基本原理却是高度一致的!从最简单的单细胞生物到最高等的人类,它们最基本最重要的组成物质都是蛋白质和核酸。核酸是生物体遗传信息的携带者,所有生物体能世代相传,就是依靠核酸分子可以精确复制的性质。蛋白质则是生命活动的主要承担者。所有的生命活动,呼吸、运动、消化……甚至感知、思维和学习,无一例外是依靠蛋白质来完成的。蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽键连接成肽链称为蛋白质的一级结构。不同蛋白质其肽链的长度不同,肽链中不同氨基酸的组成和排列顺序也各不相同。肽链在空间卷曲折叠成为特定的三维空间结构,包括二级结构和三级结构二个主要层次。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序,由这种氨基酸排列顺序决定它的特定的空间结构,这就是荣获诺贝尔奖的著名的Anfinsen原理。蛋白质分子只有处于它自己特定的三维空间结构情况下,才能获得它特定的生物活性;三维空间结构稍有破坏,就很可能会导致蛋白质生物活性的降低甚至丧失。二十世纪生物学领域最重要的成就之一,是继DNA双螺旋结构的发现总结出分子生物学的中心法则,揭示生命遗传信息传递的方向和途径。近半个世纪以来对阐明中心法则有关问题有杰出贡献而获得诺贝尔奖的学者先后多达34位。分子生物学的中心法则简单表达如下:分子生物学的中心法则中,DNA和核糖核酸(RNA)的复制、DNA转录成RNA、RNA逆转录成DNA以及以信使RNA为模板翻译成多肽链的过程和机制基本上已经阐明。但从多肽链折叠成蛋白质的过程,即所谓“新生肽的折叠”问题,是中心法则至今留下的空白,又是从“遗传信息”到“生物功能”的关键环节,有待我们在21世纪去解决。2蛋白质折叠与“折叠病”人们对由于基因突变造成蛋白质分子中仅仅一个氨基酸残基的变化就引起疾病的情况已有所了解,即所谓“分子病”,如地中海镰刀状红血球贫血症就是因为血红蛋白分子中第六位的谷氨酸突变成了颉氨酸。现在则发现蛋白质分子的氨基酸序列没有改变,只是其结构或者说构象有所改变也能引起疾病,那就是所谓“构象病”,或称“折叠病”。大家都知道的疯牛病,它是由一种称为Prion的蛋白质的感染引起的,这种蛋白质也可以感染人而引起神经系统疾病。在正常机体中,Prion是正常神经活动所需要的蛋白质,而致病Prion与正常Prion的一级结构完全相同,只是空间结构不同。这一疾病的研究涉及到许多生物学的基本问题。一级结构完全相同的蛋白质为什么会有不同的空间结构,这与Anfinsen原理是否矛盾?显然这里有蛋白质的能量和稳定性问题。从来认为蛋白结构的变化来自于序列的变化,而序列的变化来自于基因的变化,生命信息从核酸传递到蛋白。而致病Prion的信息已被诺贝尔奖获得者普鲁辛纳证明不是来自基因的变化,致病蛋白Prion导致正常蛋白Prion转变为致病的折叠状态是通过蛋白分子间的作用而感染!这种相互作用的本质和机制是什么?仅仅改变了折叠状态的分子又如何导致严重的疾病?这些问题都不能用传统的概念给予满意的解释,因此在科学界引起激烈的争论,有关研究的强度和竞争性也随之大大增强。由于蛋白质折叠异常而造成分子聚集甚至沉淀或不能正常转运到位所引起的疾病还有老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等。由于分子伴侣在蛋白质折叠中至关重要的作用,分子伴侣本身的突变显然会引起蛋白质折叠异常而引起折叠病。随着蛋白质折叠研究的深入,人们会发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。现在发现有些小分子可以穿越细胞作为配体与突变蛋白结合,从而使原已失去作战能力的突变蛋白逃逸“蛋白质质量控制系统”而“带伤作战”。这种小分子被称为“药物分子伴侣”,有希望成为治疗“折叠病”的新药。新生肽的折叠问题或蛋白质折叠问题不仅具有重大的科学意义,除了上面提到的在医学上的应用价值外,在生物工程上具有极大的应用价值。基因工程和蛋白工程已经逐渐发展成为产值以数十亿美元计的大产业,进入21世纪后,还将会有更大的发展。但是当前经常遇到的困难,是在简单的微生物细胞内引入异体DNA后所合成的多肽链往往不能正确折叠成为有生物活性的蛋白质而形成不溶解的包含体或被降解。这一“瓶颈”问题的彻底解决有待于对新生肽链折叠更多的认识。(3蛋白质折叠和“第二遗传密码”蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。在概念上有热力学的问题和动力学的问题;蛋白质在体外折叠和在细胞内折叠的问题;有理论研究和实验研究的问题。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?既然前者决定后者,一级结构和空间结构之间肯定存在某种确定的关系,这是否也像核苷酸通过“三联密码”决定氨基酸顺序那样有一套密码呢?有人把这设想的一级结构决定空间结构的密码叫作“第二遗传密码”。如果说“三联密码”已被破译而实际上已成为明码,那么破译“第二遗传密码”正是“蛋白质结构预测”从理论上最直接地去解决蛋白质的折叠问题,这是蛋白质研究最后几个尚未揭示的奥秘之一。“蛋白质结构预测”属于理论方面的热力学问题。就是根据测得的蛋白质的一级序列预测由Anfinsen原理决定的特定的空间结构。蛋白质氨基酸序列,特别是编码蛋白质的核苷酸序列的测定现在几乎已经成为常规技术,从互补DNA(cDNA)序列可以根据“三联密码”推定氨基酸序列,这些在上一世纪获得重大突破的分子生物学技术,大大加速了蛋白质一级结构的测定。目前蛋白质数据库中已经存有大约17万个蛋白的一级结构,但是测定了空间结构的蛋白大约只有1.2万个,这中间有许多是很相似的同源蛋白,而真正不同的蛋白只有1000多个。随着人类基因组计划的胜利完成,解读了人类DNA的全序列,蛋白质一级结构的数据增长必定会出现爆炸的态势,而空间结构测定的速度远远滞后,因此二者之间还会形成更大的距离,这就更需要进行蛋白质结构的预测。由于蛋白质分子结构本身的极端复杂性决定了结构预测不可能一蹴而就。目前结构预测的方法大致可分为两大类。一类是假设蛋白质分子天然构象处于热力学最稳定,能量最低状态,考虑蛋白质分子中所有原子间的相互作用以及蛋白质分子与溶剂之间的相互作用,采用分子力学的能量极小化方法,计算出蛋白质分子的天然空间结构。第二类方法是找出数据库中已有的蛋白质的空间结构与其一级序列之间的联系总结出一定的规律,逐级从一级序列预测二级结构,再建立可能的三维模型,根据总结出的空间结构与其一级序列之间的规律,排除不合理的模型,再根据能量最低原理得到修正的结构。这也就是所谓“基于知识的预测方法”。但是,第一类方法遇到在数学上难以解决的多重极小值问题,而逐级预测又受到二级结构预测精度的限制。因此必须解决这些困难,或者发展新的方法,将基于知识的预测方法与计算化学以及统计物理学结合起来,才有希望能破译“第二遗传密码”。另一方面,和以往只能利用存入蛋白质数据库的数据进行预测相比,人类DNA的全序列的测定给予蛋白质结构预测更自然的、信息量更大得多的数据库,因此可用基于同源性的重复循环技术非常可靠地灵敏地进行结构预测。已经有人根据基因组的数据用统计方法重新估计了蛋白质折叠类型数目大约为1000种,这和早期的理论估计是一致的。显然,人类基因全序列的揭示必然为蛋白质结构预测、蛋白质相互作用的预测以及单核苷酸多态性的分子表型预测开辟前所未有的广阔天地。天津大学和中国科学院生物物理所的科学家已经活跃在蛋白质结构预测领域,并做出了优秀的研究成果。他们预测,蛋白质的种类虽然成千上万,但它们的折叠类型却只有有限的650种左右。蛋白质折叠第二个根本的科学问题是具有完整一级结构的多肽链又是如何折叠成为它特定的高级结构?这是一个折叠的动力学的问题,长期以来,主要用体外的实验方法研究,虽然已有四五十年,但至今尚未解决。我们知道,多数蛋白质在体外是不稳定的,外界环境的变化,如温度、酸度等,都可以导致其空间结构的破坏和生物活性的丧失,但却并不破坏它的一级结构,这称为蛋白质的变性。对蛋白质变性作用的认识是我国科学家吴宪在三十年代基于他在国内的工作首先提出来的,长期以来已经为国际上广泛接受。变性的蛋白质往往成为一条伸展的肽链,由于一级结构仍然完整,根据Anfinsen原理它应该可以在一定的条件下重新折叠成原有的空间结构并恢复原有的活性。这就是长时间来在体外研究蛋白质折叠的基本模型。现在知道,绝大多数蛋白质从一条伸展的肽链,折叠成有其特定结构的、有活性的蛋白质,并不是一步完成的,而要经过许多折叠的中间状态。含有多个亚基的蛋白质分子,亚基间的相互作用使之组装成复杂蛋白分子。研究人员用实验方法,特别是近年来发展的快速测定方法去追踪蛋白质重折叠的全过程,尽可能捕捉折叠过程中的每一个中间状态。不同阶段的折叠速度不同,有的比较慢,比较容易发现和捕捉;但有的非常快
本文标题:蛋白质的折叠
链接地址:https://www.777doc.com/doc-2027678 .html