您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 第五章 高强及高性能混凝土施工
第五章高强及高性能混凝土施工主讲人:李惠强混凝土是当今建设工程中使用最广泛、最大宗的工程材料。现代混凝土科学技术致力于提高和改善混凝土的性能,即致力于发展高性能混凝土。混凝土的高性能主要包括两个方面的内涵,首先是新拌混凝土的施工性能,其次是硬化混凝土的使用性能。一般高性能混凝土应具备如下特征:(1)高性能混凝土拌合物应具有良好的流变性能,不泌水,不离析,甚至可自流密实,不需振捣即可保证混凝土施工浇筑质量;(2)高性能混凝土在硬化过程中体积稳定,水化热低,温升小,冷却后温度收缩小,干燥收缩小;(3)高性能混凝土硬化后,结构密实,孔隙率低,强度高,并且不易产生裂缝,具有优异的抗渗、抗冻及耐久性能;(4)高性能混凝土配比中,水胶比宜控制在0.25~0.38左右,并应尽可能多使用粉煤灰、超细矿物掺和料。不仅可改善混凝土性能,而且利用了工业废料,减少了生产水泥的能源消耗和CO2排放量,有利于改善全球生态环境。本章将主要介绍高强混凝土及免振自密实混凝土施工有关技术问题。5.1高强混凝土概述5.1.1高强混凝土的应用用常规水泥和砂石原材料配制的现代高强混凝土技术是在高效减水剂发明之后从70年代开始发展起来的,它克服了过去配制高强混凝土只能是干硬性混凝土不能工业化预拌生产和泵送施工的根本缺陷。在拌料的工作度和混凝土的强度、体积稳定性与抗渗能力等方面具有综合的优良性能,因而又被称为高性能混凝土,并被看作是将对土建工程的发展起到重要推动作用的新一代建筑结构材料。现代高强混凝土的应用已遍及桥梁工程、房建工程、港口海洋工程、地下工程等各个土建工程领域。现在有的发达国家的施工现场已能获得强度为80~100MPa的商品高强混凝土,更高强度的混凝土也能供应。我国对高强混凝土的研究始于70年代,80年代后期已开始应用到工程中,现在建设部已将C50~C80的混凝土列入今后重点推广的新技术项目。高强混凝土在房屋建筑和一般构筑物中的应用场合主要有:①高层建筑。高层建筑中采用高强混凝土可以大幅度缩小底层钢筋混凝土柱子的截面尺寸,扩大柱网间距,增大建筑使用面积。上下柱子采用不同强度等级混凝土,有利于统一柱子尺寸和模板规格,方便施工,并可利用高强混凝土的早强特点加快施工进度。高强混凝土还因徐变小、弹性模量高,可以减少柱子的压缩量和增加结构刚度,这对超高层建筑来说也是非常重要的。②大跨屋盖。大跨屋盖的自重要占到全部设计荷载中的绝大部分,所以采用高强混凝土空间结构或预应力结构就变得十分有利,可以显著降低结构的重量。③处于侵蚀环境下的建筑物或构筑物。高强混凝土有较强的抵抗化学物质腐蚀的能力和耐磨能力,耐久性优良,所以贮存某些化学物品(如亚硝酸类肥料,有腐蚀性)的筒仓或贮罐,周围大气中含有较多盐份的工程建筑物,以及直接受到侵蚀性物质作用或机械磨损的厂房、车库、厩房等地面构件均宜用高强混凝土。国外还有利用高强混凝土的坚固性来建造地下保险库,以及利用高强混凝土的气密性来建造核反应堆预应力混凝土安全壳的工程实例。至于将高强混凝土用于预制构件的生产那就更为普及了。④利用混凝土早强来加快施工进度,许多工程尤其是预应力工程结构往往着眼于早强,而高强混凝土正具有早强的特点。5.1.2混凝土获得高强的途径混凝土是多组分的集合料水化胶凝硬化后形成的固体材料,其高强的获得涉及到胶结材料本身的强度提高,骨料本身的高强,以及胶结料与骨料界面强度等,详见图5-1。据国外资料报道,现在工业生产已能提供圆柱强度133MPa的商品混凝土。试验室条件下可获得近400MPa的超高强混凝土。当采用加压加热的特殊方法,例如当混凝土硬化于345MPa和150℃的条件下曾制成强度达460MPa的超高强混凝土。图5-1提高混凝土强度的途径有研究指出,采用常规的材料和工艺制造高强混凝土,抗压强度一般只能达到90MPa,超过90MPa一般必须采用特殊的材料和工艺。目前工程上获得高强混凝土主要是通过加高效减水剂降低水灰比、添加外掺剂如粉煤灰、沸石岩粉、硅粉及减小骨料粒径来实现的。5.1.3高强混凝土结构性能特点高强混凝土的结构性能与普通低强度混凝土有较大不同,在应用中应予以充分注意。主要表现在如下方面:1.高强混凝土受压时呈高度脆性,延性很差。材料的延性与结构构件的延性既有联系,又不相同。对于高强混凝土构件的主要受力部位必须加强箍筋等横向约束作用来改善其延性。由于塑性变形能力较差,高强混凝土中钢筋锚固粘结应力的分布变得更不均匀,所以在钢筋搭接和锚固部位,也要加强设置横向箍筋。2.高强混凝土的抗拉强度、抗剪强度和粘结强度虽然均随抗压强度增加而增加,但它们与抗压强度的比值却随强度提高而变得愈来愈小,所以在处理高强混凝土构件的抗剪、冲切和扭转等问题时必须慎重。高强混凝土破坏时的断裂面穿过粗骨料,不象普通强度混凝土那样沿着骨料界面分开,所以高强混凝土受剪斜裂面上的骨料起不到咬合作用而丧失对抗剪的贡献。国外甚至有试验表明当混凝土强度超过90~100MPa后,无腹筋梁的斜截面承载力不再增长或呈现下降趋势。现行规范的抗剪强度计算方法用于高强混凝土时应加修正,特别是跨高比甚大或截面很高的情况。3.高强混凝土受压时的应力应变曲线形状与普通强度混凝土差别甚大,所以按压区混凝土的应力分布图形假定为矩形来计算极限状态下的正截面承载力时,对于弯压强度fcm的取值、矩形应力分布图高度x与中和轴高度xn的比值、以及压区混凝土极限应变εcu的数值,已再不能沿用现行规范中的数据,否则对于压区混凝土高度靠近界限高度时的偏心受压构件和受弯构件,就会得出很不安全的结果。4.在相同的横向约束力作用下,高强混凝土纵向承载力的改善要比普通强度混凝土稍差,所以在计算配有间接钢筋的螺旋箍筋柱和局部承压等承载能力时,表示横向约束作用贡献的部分也要作出修正。高强混凝土有易遭劈裂的倾向,因此在设计局部承压时还应验算抗裂强度,在配置钢筋时要避免造成容易引起劈裂的构造方法。5.高强混凝土的耐火性能不如普通强度混凝土,在100°~350℃高温下的强度损失约为20~30%,而普通强度混凝土在这一温度下的强度甚至能有稍许提高;但在更高温度下,二者的强度损失比值则大体相同。高强混凝土在火灾下还易产生表皮局部崩落,但用于一般建筑物仍能满足防火要求。德国曾结合在法兰克福建造的一幢欧洲最高的混凝土建筑(高186m),对其强度为85MPa的混凝土柱进行了足尺抗火试验。结果认为在初始30min内有某些表皮剥落,但全部试件均满足规程规定的耐火180min的要求。6.高强混凝土弹性模量和抗拉强度受骨料品种的影响很大。相同抗压强度的高强混凝土由于粗骨料的坚硬不同、砂率不高、含气量不同而在弹性模量上呈现重大差别。所以设计中如需准确定出弹性模量和抗拉强度的数值时,应该通过实测得出。泵送混凝土往往采用偏高的砂率、较多的水泥浆以及引气,因而弹性模量可能显著偏低,收缩量偏大。7.尽管高强混凝土的持久强度系数(持久抗压强度与暂时抗压强度的比值)要高于普通强度混凝土,但是高强混凝土的后期强度增长比例要比普通强度混凝土小得多。尤其是处于空气环境中的掺硅粉混凝土,后期强度很少增加,不过掺粉煤灰的混凝土则例外。8.高强混凝土的水泥用量通常较高,水化热的有害影响不容忽视。水化热易造成混凝土开裂,另外当引起的温度超过70~80℃时,还会降低混凝土的强度。如结构构件的截面或体积较大,设计时应对水化热的影响作出估算,并提出相应的施工方案和措施。5.2高强混凝土原材料和配合比设计与传统的混凝土相比,高强混凝土在原材料的配比上主要有二点不同,即低水灰比和多组分,其目的都是为了增加混凝土的密实程度,改善骨料和硬化水泥浆之间的界面性能,从而达到高强和耐久。混凝土的强度和收缩徐变在很大程度上取决于硬化水泥浆中的孔隙。在充分水化的硅酸盐水泥浆体中,由水泥熟料的主要矿物成份C3S和C2S水化形成的产物C—S—H凝胶与氢氧化钙约各占固体总体积的60%和25%左右,其余则为水泥熟料中的铝酸盐矿物成份C3A和C4AF与加在水泥中的石膏一起参与水化生成的硫铝酸盐类晶体以及未水化的熟料颗粒等。C—S—H凝胶通常是结晶很差的片体,有很大的比表面积与很强的粘结力,是决定硬化水泥浆强度与骨料界面强度的主要因素,而氢氧化钙则为块状晶体,比表面积小,粘结力很差。硬化水泥浆中包含不同尺寸形状的孔隙,大小量级从10-3μm到1mm,大致可分为凝胶孔隙,毛细孔隙和气泡三类。凝胶结构中的层间孔隙很小,约为0.0005~0.0025μm,对强度和渗透性的影响不大。毛细孔隙的形状很不规则,内部中空或填水,其尺寸与新鲜水泥浆中水泥颗粒之间的距离有关。水灰比很高时,水泥浆中水泥颗粒间距大,尽管水泥水化后的体积可增加一倍以上,但最终形成的孔隙尺寸可大到3~5μm,孔隙的总体积可达到硬化浆体所占体积的30~40%。水灰比很低时,孔隙尺寸只有0.005~0.05μm,所占总体积在10%以下。高水灰比的水泥浆还容易泌水,后者附着于骨料表面,不但削弱界面强度,而且使界面的抗渗性能大幅度降低,成为混凝土抗渗的薄弱环节。尺寸大于0.05μm的毛细孔隙对强度有害,而尺寸小于0.05μm的毛细孔隙则对收缩和徐变起更为重要的作用。水泥浆体中的气泡呈球状而区别于毛细孔隙,一种是拌合时被裹入的气泡,尺寸可大到3mm,另一种是外加引气剂所产生的气泡,尺寸约为20~200μm。引气剂能改善拌料的工作度并提高材料的抗冻性能,但混凝土中每1%体积的含气率可降低强度约5~8%,而且混凝土强度愈高,引气对强度的损害程度愈大。由此可见,降低水灰比是使混凝土减少孔隙并达到高强的最主要途径。要使低水灰比的混凝土拌料能有良好的工作度,就必须外加高效减水剂。外加粉煤灰、沸石粉、硅粉等掺合料也有改善拌料工作度、降低泌水离析、改善混凝土的微结构、增加混凝土抗酸碱腐蚀和防止碱骨料反应的作用。外加比水泥颗粒更细的掺合料是混凝土获得高强的又一重要手段。超细掺合料不仅有较高的化学活性,更为重要的是它能够进一步提高混凝土的密实程度。5.2.1水泥配制高强混凝土宜选用标号不低于525号的硅酸盐水泥、普通硅酸盐水泥、和早强型硅酸盐水泥。对于C50和C60混凝土,必要时也可用425号硅酸盐水泥和525号混合水泥配制。一般来说,用于高强混凝土的水泥,其矿物成份中的C3A含量不宜超过8%。C3A的多少与混凝土拌料变硬、初凝及混凝土的早期强度有很大关系。C3A含量较高时,在外加高效减水剂的拌料中容易出现坍落度迅速损失的现象。当然在不同的减水剂和不同牌号的水泥中并不完全一样。根据国外的经验,C3S含量偏低的水泥(如ASTMⅡ型,含C3S40~50%,C2S20~30%)要比通常含量的水泥(如ASTMⅠ型,含C3S44~55%,C2S20~30%)更适用于高强混凝土。具体选用何种水泥还应考虑水化热的限制以及早期强度和耐久性等要求而定。水泥中游离的氧化钙、氧化镁和三氧化硫等有害成份应尽可能的少;含碱量(Na2O+0.658K2O)应低于0.6%。水泥的比表面积通常在2500~3500cm2/g左右,平均粒径约为10~20μm而快硬水泥则更细些,比表面积可到4000cm2/g。将水泥二次磨细可以提高混凝土强度,但这种办法一般不宜采用,因能导致过量的水化热,而且后期强度很少增加。尽可能减少混凝土中的水泥用量并外加矿物掺合料应是配制高强混凝土的一个重要原则。虽然提高水泥用量可以增加强度,但也会产生严重水化热和过大收缩等问题;而且水泥用量超过某一限值(450~500kg/m3)以后,继续增大用量对混凝土强度的提高作用减弱。对于C50到C80混凝土,硅酸盐水泥(525号)的单方用量宜相应控制在400~550kg以下。配制C80或更高等级的混凝土,则必须外加超细掺合料如硅粉或比较细的粉煤灰、矿渣等,而不是一味加大水泥用量。5.2.2骨料细骨料宜选用质地坚硬、级配良好的河砂,其细度模数不宜小于2.6,含泥量不应超过2%。细骨料的其它质量标准应符合《普通混凝土用砂质量标准及检验方法》(JGJ52-92)的规定。粗骨料应选用质地坚硬、级配良好的石灰岩、花岗岩、辉绿
本文标题:第五章 高强及高性能混凝土施工
链接地址:https://www.777doc.com/doc-204208 .html