您好,欢迎访问三七文档
2014年全国大学生电子设计竞赛设计报告参赛题目:自动增益控制放大器题目编号:H日期:二〇一四年八月十二日至二〇一四年八月十五日自动增益控制放大器(AGC)设计摘要:本设计以可变增益放大器VCA810为核心,通过单片机MSP430控制各模块,实现电压增益连续可调,输出电压基本恒定。系统主要由可变增益放大器、MSP430单片机、AGC电路、功放电路、检波电路、比较器、噪声检测电路等组成。将输入信号经程控放大器进行调理归一处理,输入给程控增益调整放大器VCA810,将信号放大输出,通过有效值检波电路检测输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对VCA810的增益控制电压,来调整放大倍数,从而实现输出信号的稳定。整个设计使用负反馈原理,实现了自动增益的控制。关键字:VCA810MSP430有效值检测自动增益控制(AGC)一、方案设计与论证1.1整体方案方案一:采用纯硬件电路实现,由AGC和运放构成的电压比较器和减法电路实现。把实际电压与理论电压的差值通过适当幅值和极性的处理,作为AGC的控制信号,从而实现放大倍数的自动调整,实现输出电压恒定。方案二:采用可变增益放大器和单片机结合,通过单片机对输出信号AD采样并转化为数字量,与理论输出电压值进行比较,得到差值转换为控制直流电压,通过DA转化,对放大器的放大倍数精确调整,从而实现输出电压的恒定。方案一理论简单,只有硬件电路,制作起来相对容易,但其理论低端,精度不够,没有创新,通用性不好;方案二控制精确,自动控制速度快,系统可移植性强,功能改变和增加容易,对后期改善和提升电路性能有益。但需要软硬件配合,系统稍复杂。通过对两个方案的综合对比,我们选用方案二。1.2控制模块方案一:采用MCS-51。Intel公司的MCS-51的发展已经有比较长的时间,以其典型的结构、完善的总线、SFR的集中管理模式、位操作系统和面向控制功能的丰富的指令系统,为单片机的发展奠定3了良;好的基础,,应用比较广泛,各种技术都比较成熟。方案二:采用TI公司的MSP430。MSP430是一个16位的、具有精简指令集的、超低功耗的混合型单片机,基于闪存的产品系列,具有最低工作功耗,在1.8V-3.6V的工作电压范围内性能高达25MIPS。包含一个用于优化功耗的创新电源管理模块。由于它具有极低的功耗、丰富的片内外设和方便灵活的开发手段。方案一采用MCS-51控制简单,但资源有限,功能实现有困难,而且需要大量外扩单元;而方案二MSP430资源丰富,操作语言灵活,但对编程的要求有所提高。综合考虑下,我们采用MAP430作为我们的主控制器。1.3程控可变增益放大器方案一:LM358是由两个独立的高增益运算放大器组成。可以是单电源工作,也可以是双电源工作,电源的电流消耗与电源电压大小无关。应用范围包括变频放大器、DC增益部件和所有常规运算放大电路。利用模拟开关CD4051程控切换运算放大器反馈电阻从而改变放大器的增益,到达程控调理信号,将输入信号从10mV~5V的信号调理到0~3.3V的范围,以便后续电路处理。该方案电路简单,单片机控制模拟开关程控调节增益方便,确点是:模拟开关的导通电阻较大(1KΩ)并且随着频率的变化而变化,增益出现非线性。方案二:由于输入信号在10mV~5V变化,范围较大,所以利用程控可变增益放大器分段放大。程控可变增益放大器采用OP07作为可变增益放大器的放大芯片,它是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。程控可变增益放大器采用单片机控制四路继电器合理切换,达到自动分段测试输入信号,将输入信号调理到0.2V~1.4范围内,以便后续电路处理。方案二具有低噪声、高增益的特性,而且调节方便,增益线性好,性能较方案一好,所以采用第二方案。1.4AGC电路方案一:采用AD603。它提供精确的引脚可选增益,90MHz带宽时增益范围为-11dB至+31dB,9MHz带宽时增益范围为+9dB至+51dB。用一个外部电阻便可获得任何中间增益范围。两片AD603级联时,总增益的控制范围为84.28db。图1.1采用AD603的AGC电路方案二:采用VCA810。可变增益放大器VCA810提供了差分输入单端输出转换,用来改变高阻抗的增益控制输入超过-40DB增益至+40dB的范围内成dB/V的线性变化。从±5V电源工作,将调整为VCA810的增益控制电压在0V输入-40DB增益在-2V输入到+40dB。图1.2采用VCA810的AGC电路相比之下,VCA810应用要简单些,调试起来方便些,电压也限制在+—5V,不会有+10V比较符合之前的电路设计风格,对噪声的控制上,1片VCA810的性能要优于2片AD603。综合考虑下,选择方案二。1.5功放电路方案一:采用TPA3112D1集成功放,TPA3112D1是一款具有SpeakerGuardTM的25W单声道、无需外加滤波器的D类音频放大器,运用在电视和消费类音频设备中。该芯片供电范围为8V~26V;采用H桥作为功率输出级,使得其可在输出没有传统的LC滤波器的情况下直接驱动感性负载;输入的音频信号可以是差分形式,其中在24V供电情况下,满负载驱动8Ω的桥接式扬声器,声音失真杭率仅为0.1%。方案二:采用LF353运放作为输入级,LF353的总体电路设计还是比较简洁的,在功率运算放大器设计中是主流:输入放大级是由两只P沟道JFET组成的共源极差分电路,并且用镜像恒流源做负载来提高增益;在输入差分放大级和主电压放大级之间是一个由射极跟随器构成的电流放大级,用来提高主电压放大级的输入阻抗和共源极差分电路的负载增益.。采用IAF530作为出极,它具有输出阻抗低,输出电流大的特点。方案一为集成模块,使用方便,但其功率不够,幅度太大;方案二虽需要自己设计电路,但整个电路具有输入阻抗高输出阻抗低、声音失真小,完全适合600欧的负载到8欧负载的变化。故选用方案二。2.1系统整体设计框图可变增益放大器AGC单片机比较器AD637检波功放检波DA显示键盘噪声检测输入10mV噪声2V(1~3V)DAAD喇叭图1.3系统设计框图2.2硬件原理图系统硬件部分设计原理图如图1.4所示。OP07K11RELAY-DPSTS11SW-SPDTQ11NPN1R115KΩR1351KΩR1210KΩR141KΩRP11100KVCCMCUINOUT2347V+V-6OP07K12RELAY-DPSTS12SW-SPDTQ12NPN1R1510KΩR1710KΩR1610KΩR181KΩRP12100KVCCMCUINOUT2347V+V-6OP07K13RELAY-DPSTS13SW-SPDTQ13NPN1R1910KΩR2111KΩR2010KΩR221KΩRP1350KVCCMCUINOUT2347V+V-6OP07K14RELAY-DPSTS14SW-SPDTQ14NPN1R2310KΩR2511KΩR2410KΩR261KΩRP1410KVCCMCUINOUT2347V+V-6图1.4可变增益放大器IC4BLF353R2110KΩR2210KΩR2347KΩR2418KΩR2510KΩR2610KΩR2718KΩR2847KΩR302W/1ohmR312W/1ohmR29100ΩC231uFQ22IRF9530Q21IRF530RP220KΩ+C22100uF/35V+C21100uF/35V5W/8ohmSP21+12V-12VV+V-86574VoutVin图1.5功放电路+C52470uF/35V+C51470uF/35V+C53470uF/35V+C54470uF/35V+C59470uF/35V+C510470uF/35VC550.1uFC560.1uFC570.1uFC580.1uFL51L52V+V--12V+12V图1.6滤波电路LM39320KΩR311KΩR328.2KΩR3310KΩR34Q31NPNVCCVCC1328Vout图1.7比较器U21LM358R421MΩR432KΩR44100ΩR4510KΩR4810KΩR4910KΩR4710KΩR4101KΩC411uFC450.1uFC430.1uFC4647uFD211N4148D221N4148R4620KΩU22LM358Q21TIP41C4447uFC421uF+5VVoutC47220uF-5VR4120KΩ麦克风插座12图1.8噪声检测电路图1.9检波电路C30.1uFBX21.5AAC2AC3V+1V-4DB14A/200V123J3Tout8V132VVGNDINOUTIC1KA7805Vin2GND1-5V3IC2KA7905D21N4007D41N4007D11N4007D31N400712J2ACtoT12J1ACINC40.1uFC110.1uFL1C12200uF/25VC22200uF/25VC100.1uFL3C82200uF/25VC92200uF/25VL2C547uF/25VC647uF/25VL4C1247uF/25VC1347uF/25V1234J4+5Vout1234J5-5VoutC70.1uFC140.1uFBX10.5A图1.105V电源电路D51N4007D21N4007D41N4007C50.1uFC130.1uFL2C647uF/50VC747uF/50VL4C1447uF/50VC1547uF/50V1234J4+Vout1234J5-VoutAdjust1Vout2Vin3U1LM317TAdjust1Vin2Vout3U2LM337TRW13KR1240C410uF/35VRW23KR2240C1210uF/35VD11N4007D31N4007D61N4007C30.1uFBX21.5AAC2AC3V+1V-4DB14A/200V123J3Tout18VL1C14700uF/50VC24700uF/50VC110.1uFL3C94700uF/50VC104700uF/50VC80.1uFC160.1uF图1.1115V可调电源电路图1.12AGC电路2.3软件流程图系统软件流程图如图1.10所示,开发板系统初始化后,预置输出一个控制电压,然后启动AD转化,采样得到输出信号,然后与标准电压比较,修改增益控制电压,稳定输出电压。读AD637初始化频率整形显示帕值噪声检测键盘扫描读输信号AD637换档处理子程序处理噪声处理直流电平AGC控制图1.102.4参数计算(1)增益方面的计算设计目标输出电压变化范围2V±0.2V,而输入信号为100mV~5V,我们选定输出幅度为2V,即Av在2~20倍,根据程控增益调节放大器的连接方式可知,增益的计算公式为G=(40Vg+10)dB,带宽90MHz。所以将AD采集得到的输出电压Vout,与预置电压进行比较,调整Vg大小,来改变增益,从而实现输出幅值稳定在某一个数值。(2)缓冲、稳幅的方案与计算因为要用到单片机内部的AD637采样功能,所以一定要保证单片机的安全,在通过峰值检测电路的检测之后,把检测到的峰值经过一个后级缓冲电路再接一个3V稳压管之后送给单片机,既保证单片机端口的安全,同时把电路与单片机隔离。二、竞赛工作环境条件系统调试所使用的仪器设备如表所示。仪器名称型号数量直流稳压源APS3003S-3D1数字存储示波器MST1102B1数字万用表UT531信号发生器EE1643C1表2.1三、系统测试及数据分析3.1测试方案及数据分析电源±12V供电,负载为8Ω电阻适用频率范围约为5Hz~100Khz最大输入峰峰值(不失真)约为Vin≈3.0Vpp。最大输出峰峰值(不失真)约为Vout≈16Vpp。最大输出功率约为Pmax≈4W。功放效率约为η≈57%。表3.1功放测试数据测试流程:(1)噪声测试:输入频率10KHZ和100KHZ的正弦波信号。负载
本文标题:自动增益控制放大器
链接地址:https://www.777doc.com/doc-2051073 .html