您好,欢迎访问三七文档
本章介绍压电效应、逆压电效应及应用、压电元件、等效电路、电荷放大器、压电传感器的结构及应用,振动的基本概念、振动传感器及振动频谱分析等。第六章压电传感器6.1压电传感器的工作原理6.2压电传感器的测量转换电路6.3压电传感器的结构和应用6.4振动测量及频谱分析压电式传感器的特点:是一种自发电式传感器。它以某些电介质的压电效应为基础,在外力作用下,在电介质表面产生电荷,从而实现电量电测的目的。压电传感元件是力敏感元件,它可以测量最终能变换为力的那些非电物理量,例如动态力、动态压力、振动加速度等,但不能用于静态参数的测量。天然结构的石英晶体呈六角形晶柱,用金刚石刀具切割出一片正方形薄片。当晶体薄片受到压力时,晶格产生变形,表面产生电荷,电荷Q与所施加的力F成正比,这种现象称为压电效应。还有一些人造材料也具有压电效应。若在电介质的极化方向上施加交变电压,它就会产生机械变形。当去掉外加电场时,电介质的变形随之消失,这种现象称为逆压电效应(电致伸缩效应)。石英晶体的化学式为SiO2,它的每个晶胞中有3个硅离子和6个氧离子,一个硅离子和两个氧离子交替排列(氧离子是成对出现的)。沿光轴看去,可以认为是正六边形排列结构。在无外力作用时,硅离子所带正电荷的等效中心与氧离子所带负电荷的等效中心是重合的,整个晶胞不呈现带电现象。在晶体学中,可用三根相互垂直的轴来表示。其中纵向轴称为光轴,也称z轴,有折光效应,没有压电效应。经过正六面体棱线,并垂直于光轴的轴线称为电轴,也称x轴;经过正六面体的棱面且垂直于光轴的轴线称为机械轴,也称y轴。从石英晶体上切割出一块平行六面体的切片,再进一步从该正六面体上切割出正方形薄片,就是工业中常用的石英晶片。正方形薄片的6个面分别垂直于光轴(z轴)、电轴(x轴)和机械轴(y轴)。在x面的两个表面施加压力,在x面的上下表面产生电荷;在y面的两个表面施加压力,仍然只在x面产生电荷。l、δ、b分别为石英晶片的长度、厚度和高度。电荷只产生在与x轴垂直的x面的前后两侧。石英(SiO2)是一种具有良好压电特性的压电晶体。其介电常数和压电系数的温度稳定性相当好,在常温范围内这两个参数几乎不随温度变化,如下两图。在20~200℃范围内,温度每升高1℃,压电系数仅减少0.016%。但是当到573℃时,它突然完全失去了压电特性,这就是它的居里点。石英的d11压电常数相对于20℃的d11温度变化特性石英在高温下相对压电常数的温度特性a.在晶体的弹性限度内,在x轴方向上施加压力Fx时,在x面上产生的电荷为:Q=d11Fx式中的d11称为压电常数。b.在y轴方向施加压力Fy时,仍然在x面上产生电荷:式中:l、δ为石英晶片的长度和厚度。11ylQdF当力的方向改变时,电荷的极性随之改变,输出电压的频率与动态力的频率相同;当施加静态力时,在初始瞬间,产生与力成正比的电荷,但由于表面漏电,所产生的电荷很快泄漏,并消失。1-正电荷等效中心2-负电荷等效中心1-正电荷等效中心2-负电荷等效中心Q=d11Fx晶体沿x面受压力时的带电情况分析石英晶体的正负电荷中心分离,宏观上看,x面的上表面带正电,下表面带负电。1-正电荷等效中心2-负电荷等效中心晶片沿x面受拉力时,或是所受压力消失后,弹性体反弹时,也能导致石英晶体的正负电荷中心分离,x面的上表面带负电,下表面带正电。受交变力时,产生交变电信号。y面受压力时的带电情况等效于沿x轴方向施拉力的情况。但产生的电荷量可能比沿x轴方向施拉力时的电荷量大几倍,视晶片的长度与宽度之比l/δ的倍数而不同。11ylQdF沿y面受压力时,石英晶体的正负电荷中心也产生分离,x面的上表面带负电,下表面带正电。无论是沿x轴方向施加力,还是沿y轴方向施加力,电荷只产生在x面上。光轴(z轴)方向受力时,由于晶格的变形不会引起正负电荷中心的分离,所以不会产生压电效应。沿y面受拉力时,石英晶体的正负电荷中心也产生分离,x面的上表面带正电,下表面带负电,带电的方向与x面受压力时的情况相同。交变外力作用在压电元件上,可以产生交变的电荷Q,在上下镀银的表面上产生交变电压。产生的交变电荷的变化频率与交变力的频率相同,等效于交变电荷源。压电传感器中的压电元件材料常用的有三类:一类是压电晶体(如上述的石英晶体);另一类是经过极化处理的压电陶瓷;第三类是经过极化处理的高分子压电材料。压电材料的分类石英晶体在20~200℃的范围内压电常数的变化量只有-0.0001/℃。还具有自振频率高、动态响应好、机械强度高、绝缘性能好、迟滞小、重复性好、线性范围宽等优点。石英晶体的不足之处是压电常数较小:d=2.3110-12C/N。因此石英晶体大多只在标准传感器、高准确度传感器或使用高温压电传感器中使用,而在一般要求的测量中,基本上采用压电陶瓷。石英晶体在振荡电路中工作时,压电效应与逆压电效应交替作用,从而产生稳定的振荡输出频率。晶振必须严格控制晶片的切割角度。使在正常的工作温度范围内,不至超过所要求的容许误差。晶片在切割、抛光的连续加工过程中,都会因加工的准确度不同,导致一定的离散性,使温漂变大,灵敏度不一致等。压电陶瓷是人工制造的多晶压电材料,它比石英晶体的压电灵敏度高得多,而制造成本却较低,因此目前国内外生产的压电元件绝大多数都采用压电陶瓷。常用的压电陶瓷材料有锆钛酸铅系列压电陶瓷(PZT)及非铅系钛酸钡压电陶瓷(如BaTiO3等)。压电陶瓷是一种多晶压电材料。某些陶瓷粉末原料,在一定的工艺条件下,经1000℃以上高温烧结、机械加工,可以制成圆片或其他需要的形状。烧结而成的压电陶瓷由无数细微的电畴组成,这些电畴实际上是分子自发极化的小区域。在无外电场作用时,各个电畴在晶体中杂乱分布,它们的极化效应被相互抵消了,因此原始的压电陶瓷呈中性,不具有压电性质。为了使压电陶瓷具有压电效应,必须在高温下,在上下端面镀上电极,用上千伏高电压进行极化处理,使电畴的方向趋向一致,冷却后就具有压电效应。a)极化处理前电畴杂乱分布b)在极化电压下的电畴分布c)冷却、稳定后的电畴分布1-镀银上电极2-压电陶瓷3-镀银下电极4-电畴5-极化高压电源↑-细微的电畴极化方向33QdF极化电场和极化温度越高,促使电畴取向排列的作用越大,极化就越充分。常用压电陶瓷材料的极化温度取320~420K,极化时间从几分钟到几十分钟。(1)锆钛酸铅系列压电陶瓷(PZT):是由钛酸铅和锆酸铅组成的固熔体。有较高的压电常数[d=(200~500)10-12C/N]。在上述材料中加入微量的镧(La)、铌(Nb)或锑(Sb)等,可以得到不同性能的PZT材料。(2)非铅系压电陶瓷:能减少制造过程中铅对环境的污染。BaTiO3基无铅压电陶瓷、BNT基无铅压电陶瓷、铌酸盐基无铅压电陶瓷、钛酸铋钠钾无铅压电陶瓷、钛酸铋锶钙无铅压电陶瓷和钛酸钡钙压电陶瓷等,它们的多项性能都已超过含铅系列压电陶瓷,是今后压电陶瓷的发展方向。锆钛酸钡钙的压电系数达到600pC/N,压电性能已超过了世界上已使用半个世纪、但对人体和环境有害的核心压电材料锆钛酸铅陶瓷(250pC/N)。无铅压电陶瓷取代铅基压电陶瓷已成为必然的趋势。典型的高分子压电材料有聚偏二氟乙烯(PVF2或PVDF)、聚氟乙烯(PVF)、改性聚氯乙烯(PVC)等。它是一种柔软的压电材料,可根据需要制成薄膜或电缆套管等形状。它不易破碎,具有防水性,可以大量连续拉制,制成较大面积或较长的尺度,价格便宜,频率响应范围较宽,测量动态范围可达80dB。高分子压电材料是一种柔性的压电元件。密度仅为压电陶瓷的1/4,弹性柔顺常数比陶瓷大30倍。可以在几十微米的PVDF压电膜上,两面蒸镀金、银等金属电极,电极厚度约0.1μm,再层压在0.125mm聚酯基片上,并制作两个压接端子,作为信号引脚。高分子压电材料的应用,从医学上使用的精密微细敏感元件,到工业上用的各种传感器;从军事上应用的声纳,到民用的防盗报警系统等。可以用于制作超声诊断仪、血压计、指脉膊计、心率计、机器人的触觉传感器、加速度传感器、水声探测器、声纳器件、扬声器等。不易破碎,具有防水性,可以制成较大面积或较长的成品,因此价格便宜。其测量动态范围可达80dB,频率响应范围可从0.1Hz直至109Hz。工作温度一般低于100℃。温度升高时,灵敏度将降低。它的机械强度不够高,耐紫外线能力较差,不宜暴晒,以免老化。典型的高分子压电材料有聚偏二氟乙烯(PVF2或PVDF)、聚氟乙烯(PVF)、改性聚氯乙烯(PVC)、聚γ甲基L谷氨酸酯(PMLG)、聚碳酸酯(Pc)和尼龙11等,灵敏度比压电陶瓷高十几倍,输出脉冲电压可以直接驱动CMOS集成门电路。将PVDF树脂加热,用辊压机压制成膜或电缆套管。定向拉伸的温度约为120℃,在拉伸薄膜的两面蒸镀金、银等金属电极,电极厚度为0.1μm。与压电陶瓷类似,必须用高电压进行极化处理。薄膜经极化处理后,分子偶极子就趋向一致的方向,显现出电压特性。极化场强约5kV/mm,极化温度为80~100℃,极化时间为30~60min。压电传感器的输出阻抗较大,要求电压放大器具有较大的输入阻抗。又由于压电传感器的输出电压与压电片的极间电容Ca以及传输线的对地分布电容Cc有关,如果接入普通的电压放大电路,将受到很多外界因素的影响。现在多采用“电荷放大器”来将压电传感器输出的电荷转换为电压,属于Q/U转换器,但并无放大电荷的作用,只是一种习惯叫法。压电元件在承受沿敏感轴方向的外力作用时,将产生电荷,因此它相当于一个电荷源。当压电元件表面聚集电荷时,它又相当于一个以压电材料为介质的电容器,两电极板间的电容(极间电容)Ca为:AC0ra式中A——压电元件电极面积;——压电元件厚度;r——压电材料的相对介电常数;0——真空介电常数。a)结构示意图b)压电元件的符号c)压电元件的等效电路1-镀银上电极2-压电晶体3-镀银下电极如果压电元件直接与放大器配套使用,除了极间电容,还应考虑到传输屏蔽电缆芯线对接地屏蔽层的分布电容Cc的影响。如果忽略Ra和放大器的输入电阻Ri的影响,则有式中Ci——电压放大器的输入电容;Q——压电元件输出的电荷量。屏蔽电缆的对地分布电容大约为100pF/m。当屏蔽电缆较长时,Cc显著增大,放大器的输入电压Ui将比压电传感器空载时的输出Uo小很多,且不稳定。iaciQQUCCCC总Ci、Ri为放大器的输入电容和输入电阻原理:电荷放大器是一个具有反馈电容Cf的高增益运算放大器电路。当放大器开环增益A和输入电阻Ri、反馈电阻Rf(用于防止放大器的直流饱和)相当大时,放大器的输出电压Uo正比于输入电荷Q,反比于反馈电容Cf,而基本上与Cc、Ca、Ci无关:off1AQQUACC1-压电传感器2-屏蔽电缆线3-传输线分布电容4-电荷放大器SC-灵敏度选择开关SR-带宽选择开关Cf´-Cf在放大器输入端的密勒等效电容Cf″-Cf在放大器输出端的密勒等效电容反馈电容Cf跨接在放大器的反相输入端和输出端之间。根据密勒等效定理,相当于在输入端并联了一个容量很大的等效电容Cf´。设运算放大器的开环增益数为Au,通常约为120dB,相当于106。Cf´=(1+Au)Cf,Cf的取值范围多为100pF~0.1μF。若Cf取最小值100pF,则等效电容Cf´约为100μF。输入回路的总电容基本上由Cf'决定C总=Ca+Cc+Ci+(1+Au)Cf式中Q:压电元件受动态力作用所产生的电荷有效值;Cf:并联在放大器输入端和输出端之间的反馈电容当A足够大时,通常A=104~106,则(1+A)Cf(Ca+Cc+Ci),上式可化简为:由此可知,电荷放大器的输出电压仅与输入电荷和反馈电容有关,电缆引线电容等因素的影响可忽略不计。oiacif=1QAQUAuACCCCAC总off1AQQUACC当被测振动较小时,电荷放大器的反馈电容应取得小一些,可以取得较大的输出电压;为了进一步减少传感器输出电缆的分布电容对放大电路的影响,常将电荷
本文标题:自动检测-第六章
链接地址:https://www.777doc.com/doc-2051272 .html