您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 康普顿效应康普顿效应
17.2光的粒子性17世纪明确形成了两大对立学说牛顿惠更斯微粒说波动说19世纪初证明了波动说的正确性由于波动说没有数学基础以及牛顿的威望使得微粒说一直占上风19世纪末光电效应现象使得爱因斯坦在20世纪初提出了光子说:光具有粒子性对光学的研究从很早就开始了……圆屏衍射圆孔衍射钢针的衍射增透膜薄膜干涉镜面检测光的干涉和衍射现象表明光确实是一种波光电效应当光线(包括不可见光)照射在金属表面时,金属中有电子逸出的现象,称为光电效应。逸出的电子称为光电子。2.光电效应的电路图VGK阳极阴极A光电子在电场作用下形成光电流(1)存在饱和电流光照不变,增大UAK,G表中电流达到某一值后不再增大,即达到饱和值。实验表明:入射光越强,饱和电流越大3.光电效应的实验规律将电源反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。当K、A间加反向电压,光电子克服电场力作功,当电压达到某一值Uc时,光电流恰为0。Uc称遏止电压。(2)存在遏止电压和截止频率VGK阳极阴极为什么会存在遏止电压?IUcOU光强较弱光电效应伏安特性曲线遏止电压IIsUaOU光强较强光强较弱光电效应伏安特性曲线遏止电压饱和电流实验表明:对于一定颜色(频率)的光,无论光的强弱如何,遏止电压是一样的.光电子的最大初动能只与入射光的频率有关,与入射光的强弱无关。•当入射光的频率减小到某一数值时,即使不施加反向电压也没有光电流,这表明已经没有光电子了,称为截止频率或是极限频率,这就是说,当入射光的频率低于截止频率时不发生光电效应。•实验表明:不同的金属的极限频率不同。b.存在截止频率实验结果:即使入射光的强度非常微弱,只要入射光频率大于被照金属的极限频率,电流表指针也几乎是随着入射光照射就立即偏转。更精确的研究推知,光电子发射所经过的时间不超过10-9秒(这个现象一般称作“光电子的瞬时发射”)。光电效应在极短的时间内完成(3)具有瞬时性VGAK阳极阴极二.经典理论解释光电效应的疑难1.经典认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。2.光电效应实验表明:只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。3.光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。1.光子:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。这些能量子后来被称为光子。爱因斯坦的光子说hE爱因斯坦从普朗克的能量子说中得到了启发,他提出:三.爱因斯坦的光量子假设2.爱因斯坦的光电效应方程0WEhk0WhEk或——光电子最大初动能——金属的逸出功W0221cekvmE一个电子吸收一个光子的能量hν后,一部分能量用来克服金属的逸出功W0,剩下的表现为逸出后电子的初动能Ek,即:三.爱因斯坦的光量子假设逸出功W0使电子脱离某种金属所做功的最小值,叫做这种金属的逸出功。书32页表格1几种金属的逸出功和极限频率3.光子说对光电效应的解释①爱因斯坦方程表明,光电子的初动能Ek与入射光的频率成线性关系,与光强无关。只有当hνW0时,才有光电子逸出,就是光电效应的截止频率。hWc0②电子一次性吸收光子的全部能量,不需要积累能量的时间,光电流自然几乎是瞬时发生的。③光强较大时,包含的光子数较多,照射金属时产生的光电子多,因而饱和电流大。三.爱因斯坦的光量子假设3.从方程可以看出光电子初动能和照射光的频率成线性关系4.从光电效应方程中,当初动能为零时,可得极极限频率:爱因斯坦对光电效应的解释:1.光强大,光子数多,释放的光电子也多,所以光电流也大。2.电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。4.光电效应理论的验证美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦方程,h的值与理论值完全一致,又一次证明了“光量子”理论的正确。爱因斯坦由于对光电效应的理论解释和对理论物理学的贡献获得1921年诺贝尔物理学奖密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。放大器控制机构可以用于自动控制,自动计数、自动报警、自动跟踪等。5.光电效应在近代技术中的应用1.光控继电器K1K2K3K4K5KA可对微弱光线进行放大,可使光电流放大105~108倍,灵敏度高,用在工程、天文、科研、军事等方面。2.光电倍增管应用•光电管•光电源电流计IAK康普顿效应康普顿效应(1892-1962)美国物理学家第2课时1.光的散射光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射2.康普顿效应1918-1922年康普顿在做X射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。康普顿实验装置示意图X射线管RGX射线谱仪光阑1B2B石墨体(散射物)φA晶体C调节A对R的方位,可使不同方向的散射线进入光谱仪。康普顿实验指出散射光中除了和入射光波长λ相同的射线之外,还出现一种波长λ'大于λ的新的射线。改变波长的散射康普顿散射康普顿效应散射X射线的波长中有两个峰值和且与散射角有关康普顿正在测晶体对X射线的散射按经典电磁理论:如果入射X光是某种波长的电磁波,散射光的波长是不会改变的!康普顿散射曲线的特点:1.除原波长0外出现了移向长波方向的新的散射波长。2.新波长随散射角的增大而增大。散射中出现≠0的现象,称为康普顿散射。波长的偏移为0=0O=45O=90O=135O................................................................................o(A)0.7000.750λ波长.......0遇到的困难经典电磁理论在解释康普顿效应时2.无法解释波长改变和散射角的关系。射光频率应等于入射光频率。其频率等于入射光频率,所以它所发射的散过物质时,物质中带电粒子将作受迫振动,1.根据经典电磁波理论,当电磁波通光子理论对康普顿效应的解释康普顿效应是光子和电子作弹性碰撞的子能量几乎不变,波长不变。小于原子质量,根据碰撞理论,碰撞前后光光子将与整个原子交换能量,由于光子质量远2.若光子和束缚很紧的内层电子相碰撞,是散射光的波长大于入射光的波长。部分能量传给电子,散射光子的能量减少,于1.若光子和外层电子相碰撞,光子有一结果,具体解释如下:3.因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。光子理论对康普顿效应的解释康普顿效应的定量分析hYX0meYXhvm(1)碰撞前(2)碰撞后(3)动量守恒光子在自由电子上的散射Xθnchvm0nch由能量守恒:由动量守恒:202)(cmhmc最后得到:2sin220cmhcoscosmvchchsinsin0mvch康普顿散射公式此式说明:波长改变与散射物质无关,仅决定于散射角;波长改变随散射角增大而增加。cmhc0电子的康普顿波长其值为0243.0cÅ三.康普顿散射实验的意义(1)有力地支持了爱因斯坦“光量子”假设;(2)首次在实验上证实了“光子具有动量”的假设;(3)证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。康普顿的成功也不是一帆风顺的,在他早期的几篇论文中,一直认为散射光频率的改变是由于“混进来了某种荧光辐射”;在计算中起先只考虑能量守恒,后来才认识到还要用动量守恒。康普顿于1927年获诺贝尔物理奖。1925—1926年,吴有训用银的X射线(0=5.62nm)为入射线,以15种轻重不同的元素为散射物质,四、吴有训对研究康普顿效应的贡献1923年,参加了发现康普顿效应的研究工作.对证实康普顿效应作出了重要贡献。在同一散射角()测量各种波长的散射光强度,作了大量X射线散射实验。0120(1897-1977)吴有训光子的能量和动量2mcEhchcchmcP2hE2chmhEhP动量能量是描述粒子的,频率和波长则是用来描述波的称为电子的Compton波长)cos1(c只有当入射波长0与c可比拟时,康普顿效应才显著,因此要用X射线才能观察到康普顿散射,用可见光观察不到康普顿散射。波长的偏移只与散射角有关,而与散射物质种类及入射的X射线的波长0无关,0c=0.0241Å=2.4110-3nm(实验值)注意几点:2sin220cmh①.散射波长改变量的数量级为10-12m,对于可见光波长~10-7m,,所以观察不到康普顿效应②.散射光中有与入射光相同的波长的射线,是由于光子与原子碰撞,原子质量很大,光子碰撞后,能量不变,散射光频率不变。④.在重原子中,内层电子比轻原子多,而内层电子束缚很紧,所以原子量大的物质,康普顿效应比原子量小的弱。③.当=0时,光子频率保持不变;=时,光子频率减小最多。康普顿散射进一步证实了光子理论的正确性,还证明了在微观领域中也是严格遵守能量、动量守恒定律三、光的波粒二象性光具有波动性,又有粒子性,即波粒二象性。光在传播过程中表现出波动性,如干涉、衍射、偏振现象。光在与物质发生作用时表现出粒子性,如光电效应,康普顿效应。关于光的本性问题,我们不应该在微粒说和波动说之间进行取舍,而应该把它们看作是光的本性的两种不同侧面的描述。
本文标题:康普顿效应康普顿效应
链接地址:https://www.777doc.com/doc-2069886 .html