您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 初三锐角三角函数与圆综合专题训练
-1-中考数学锐角三角函数与圆综合训练题1、如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.(1)求证:CD2=CA•CB;(2)求证:CD是⊙O的切线;(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.2、如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.-2-3、如图11,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.4、如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若2KG=KD·GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=35,AK=23,求FG的长.5、如图11,AB是⊙O的弦,D是半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于F,且CE=CB。(1)求证:BC⊙O是的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=135,求⊙O的半径。图11ACBDEFOP-3-6、如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线;(2)若点E是BC上一点,已知BE=6,tan∠ABC=32,tan∠AEC=35,求圆的直径.7、如图右,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。(1)求证:CD为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.8、(已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于▲时,∠PAB=60°;当PA的长度等于▲时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.P坐标为(a,b),试求2S1S3-S22的最大值,并求出此时a,b的值.-4-9、10、(芜湖市)(本小题满分12分)如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB⌒上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.(1)求证:PM=PN;(2)(2)若BD=4,PA=32AO,过点B作BC∥MP交⊙O于C点,求BC的长.11、(黄冈市)(6分)如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB·AE,求证:DE是⊙O的切线.-5-12、如图,以线段AB为直径的⊙O交线段AC于点E,点M是AE的中点,OM交AC于点D,60BOE°,1cos2C,23BC.(1)求A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.13、如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.14、如图,⊙O是Rt△ABC的外接圆,AB为直径,ABC=30°,CD是⊙O的切线,ED⊥AB于F,(1)判断△DCE的形状;(2)设⊙O的半径为1,且OF=213,求证△DCE≌△OCB.OBACEMD第6题图ABDEOFC-6-15、如图3,直线AB经过⊙O上的点C,并且OAOB,CACB,⊙O交直线OB于ED,,连接ECCD,.(1)求证:直线AB是⊙O的切线;(2)试猜想BCBDBE,,三者之间的等量关系,并加以证明;(3)若1tan2CED,⊙O的半径为3,求OA的长.16、已知:如图,AB是⊙O的直径,10AB,DC切⊙O于点CADDC,,垂足为D,AD交⊙O于点E.(1)求证:BCEC;(2)若4cos5BEC,求DC的长.17、如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.DCBOAE-7-18、如图,已知Rt△ABC和Rt△EBC,∠B=90°.以边AC上的点O为圆心、OA为半径的⊙O与EC相切,D为切点,AD∥BC.(1)用尺规确定并标出圆心O;(不写作法和证明,保留作图痕迹)(2)求证:∠E=∠ACB;(3)若AD=1,,求BC的长.19、如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)求证:点D是BC的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)如果⊙O的直径为9,cosB=,求DE的长.20、如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.-8-21、如图9,直线y=kx-1与x轴、y轴分别交与B、C两点,tan∠OCB=21.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:①当点A运动到什么位置时,△AOB的面积是41;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形.若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.图9
本文标题:初三锐角三角函数与圆综合专题训练
链接地址:https://www.777doc.com/doc-2082887 .html