您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 第六章电力系统暂态稳定分析
第六章电力系统暂态稳定分析6.1概述在正常的稳态运行情况下,电力系统中各发电机组输出的电磁转矩和原动机输入的机械转矩平衡,因此所有发电机转子速度保持恒定。但是电力系统经常遭受到一些大干扰的冲击,例如发生各种短路故障,大容量发电机、大的负荷、重要输电设备的投入或切除等等。在遭受大的干扰后,系统中除了经历电磁暂态过程以外,也将经历机电暂态过程。事实上,由于系统的结构或参数发生了较大的变化,使得系统的潮流及各发电机的输出功率也随之发生变化,从而破坏了原动机和发电机之间的功率平衡,在发电机转轴上产生不平衡转矩,导致转子加速或减速。一般情况下,干扰后各发电机组的功率不平衡状况并不相同,加之各发电机转子的转动惯量也有所不同、使得各机组转速变化的情况各不相同。这样,发电机转子之间将产生相对运动,使得转子之间的相对角度发生变化,而转子之间相对角度的变化又反过来影响各发电机的输出功率,从而使各个发电机的功率、转速和转子之间的相对角度继续发生变化。与此同时,由于发电机端电压和定子电流的变化,将引起励磁调节系统的调节过程;由于机组转速的变化,将引起调速系统的调节过程;由于电力网络中母线电压的变化,将引起负荷功率的变化;网络潮流的变化也将引起一些其他控制装置(如SVC、TCSC、直流系统中的换流器)的调节过程,等等。所有这些变化都将直接或间接地影响发电机转抽上的功率平衡状况。以上各种变化过程相互影响,形成了一个以各发电机转子机械运动和电磁功率变化为主体的机电暂态过程。电力系统遭受大干扰后所发生的机电暂态过程可能有两种不同的结局。—种是各发电机转子之间的相对角度随时间的变化呈摇摆(或振荡)状态,且振荡幅值逐渐衰减,各发电机之间的相对运动将逐渐消失,从而系统过渡到一个新的稳态运行情况,各发电机仍然保持同步运行。这时,我们就称电力系统是暂态稳定的。另—种结局是在暂态过程中某些发电机转子之间始终存在着相对运动,使得转子间的相对角度随时间不断增大、最终导致这些发电机失去同步。这时称电力系统是暂态不稳定的。当一台发电机相对于系统中的其他机失去同步时,其转子将以高于或低于需要产生系统频率下电势的速度运行,旋转的定子磁场(相应于系统频率)与转子磁场之间的滑动将导致发电机输出功率、电流和电压发生大幅度摇摆,使得一些发电机和负荷被迫切除,严重情况下甚至导致系统曲解列或瓦解。电力系统正常运行的必要条件是所有发电机保持同步。因此,电力系统在大干扰下的稳定性分桥,就是分析遭受大干扰后系统中各发电机维持同步运行的能力,常称为电力系统的暂态稳定分析。上述对电力系统的暂态稳定分析通常仅涉及系统在短期内(约10s之内)的动态行为,然而有时我们还必须分析系统的中期(10s直至几分钟)和长期(几分钟直至几十分钟)动态行为,这就涉及到电力系统的中期和长期稳定性分析。中期和长期稳定性主要关注在遭受到严重破坏时电力系统的动态响应。当电力系统遭受到严重破坏时,将导致系统的电压、频率和潮流发生重大偏移,因此必然涉及到一些在短期暂态稳定分析时未曾考虑的慢过程、控制及保护的行为。对电压和频率发生大的偏移起作用的装置,其响应过程从几秒(如发电机控制与保护装置的响应)到几分钟(如原动机能量供应系统和负载电压调节器等装置的响应)。进行长期稳定性分析的重点是与大范围系统破坏同时发生的较慢的、持续时间长的现象。以及由此引起的发电机与负荷的有功功率和无功功率显著的持续性失配。这些现象包括:锅炉的动态,水轮机的进水口和水管功态,自动发电控制(AGC),电厂和输电系统的控制与保护,变压器饱和,负荷和网络的非正常频率效应等。长期稳定通常关心系统对特大干扰的响应,这些干扰不属于正常系统设计准则的预想事故。在这种情况下,可能引发连锁事故及系统被分离成几个孤立的子系统。这时稳定分析要回答的问题是如何在负荷损失的情况下各孤岛能达到可以接受的平衡状态。中期响应是指短期响应向长期响应的过渡。中期稳定研究的重点是各机之间的同步功率振荡,包括一些慢现象以及可能的大的电压和频率偏移[4]。电力系统遭受大干扰是人们所不希望的,但事实上又是无法避免的。系统在遭受大干扰后失去稳定的后果往往非常严重,甚至是灾难性的。事实上电力系统遭受到的各种大干扰,诸如短路故障.大容量发电机、大的负荷、重要输电设备的投入或切除等都是以一定的概率随机地发生,因此系统的设计、运行方式的制定总是需要保证系统在合理选择的预想事故下能够保持稳定,而不能要求电力系统能承受所有干扰的冲击。由于各国对系统稳定性的要求不同,因此对预想事故的选择也就有不同的标准。我国对系统稳定性的要求反映在《电力系统安全稳定导则》[3]中。判断电力系统在预想事故下能否稳定运行,需要进行暂态稳定分析。当系统不稳定时。还需要研究提高系统稳定的有效措施;当系统发生重大稳定破坏事故时,需要进行事故分析,找出系统的薄弱环节,并提出相应的对策。下面首先讨论电力系统暂态稳定分析所用全系统数学模型的构成[1,2,4,6,25]。在电力系统稳定分析中,各元件所采用的数学模型,不但与稳定分析结果的正确性直接相关,而且对稳定分析的复杂性有很大的影响。因此,选用适当的数学模型描述各元件的特性,使得稳定分析的结果满足合理的精度要求并且计算简单,是电力系统稳定分析中一个至关重要的问题。对于包含众多发电机、输电线路、负荷及各种控制装置的实际电力系统.考虑到任何冲击后果的复杂性,使得各元件的建模遇到很大的困难。所幸的是,各种现象时间常数的明显差别允许我们把注意力集中在影响暂态过程的关键元件和所研究区域。在进行电力系统稳定分析时,由于在遭受干扰后电力网络的电磁暂态过程衰减很快,因此忽略其暂态过程是合理的。采用这种简化后,电力网络的模型中就仅包含代数方程。另外,在发电机定子电压方程中,d和q反映了定子绕组本身的暂态过程,忽略这两项,意味着忽略了定子中的直流分量,因此定子中仅包合基频电气分量,定子电压方程也就变成代数方程。很明显,同时忽略发电机定子和电力网络的暂态过程,能够使得定子电压方程和网络方程保持一致,即均为代数方程,且仅包含基频电气分量,因而可以用稳态关系式描述,这样做显然还使全系统微分方程的数目大大减少,从而可提高系统稳定分析的效率。由于系统中所有的电气量在交流系统中是基波交流分量的有效值,故可用相量描述(用大写字母表示);在直流系统中是直流分量的平均值。描述各元件电压、电流关系的方程都为代数方程(和潮流计算中的稳态方程相同);由于系统中动态元件的存在,一些电气量表现出一定的动态特性。因此,在遭受干扰后,电力系统经历的整个暂态过程可以看成是各时刻的稳态量(正弦交流量)按一定动态特性的过渡,这时系统中的电压、电流、功率能够发生突变。这就是电力系统稳定分析常用的准稳态模型(Quasi-steadystateModel)。图6—1给出了用于电力系统稳定分析的全系统数学模型的构架。由图6—1可以看出,全部电力系统的表达式包括描述同步发电机、与同步发电机相关的励磁系统和原动机及其调速系统、负荷、其他动态装置等动态元件的数学模型及电力网络的数学模型。很明显,系统中的所有动态元件是相互独立的,是电力网络将它们联系在一起。整个系统的模型在数学上可以统一描述成如下一般形式的微分-代数方程组:式中:x表示微分方程组中描述系统动态特性的状态变量;y表示代数方程组中系统的运行参量。微分方程组(6—1)主要包括:(1)描述各同步发电机暂态和次暂态电势变化规律的微分方程。(2)描述各同步发电机转子运动的摇摆方程。(3)描述同步发电机组中励磁调节系统动态特性的微分方程。(4)描述同步发电机组中原动机及其调速系统动态特性的微分方程。(5)描述各感应电动机和同步电动机负荷动态特性的微分方程。(6)描述直流系统整流器和逆变器控制行为的微分方程。(7)描述其他动态装置(如SVC、TCSC等FACTS元件)动态特性的微分方程。而代数方程组(6—2)主要包括:(1)电力网络方程,即描述在公共参考坐标系x-y下节点电压与节点注入电流之间的关系。(2)各同步发电机定子电压方程(建立在各自的d-q坐标系下)及d-q坐标系与x-y坐标系间联系的坐标变换方程。(3)各自流线路的电压方程。(4)负荷的电压静态持性方程等。根据对计算结果精度要求的不同,可依据所研究问题的性质,本着抓住重点、忽略次因素的原则使用相应复杂程度的元件数学模型。目前,电力系统暂态稳定分析方法基本分为两种。第一种方法是数值积分方法,又称间接法[26~32],其基本思想是用数值积分方法求出描述受扰运动微分方程组的时间解,然后用各发电机转子之间相对角度的变化判断系统的稳定性。数值积分法由于可以适应各种不同详细程度的元件数学模型.且分析结果准确、可靠,所以得到了广泛的实际应用,并一直作为一种标准方法来考察其他分析方法的正确性和精度。目前,利用数值积分法进行电力系统暂态稳定分析已经相当成熟,并已有许多商业性程序相继问世。如我国电力科学研究院编制的《交直流电力系统综合计算程序》,由BPA根据美国WSCC标准开发的暂态稳定分析程序。PTI开发的PSSE,美国EPRI的ETMSP,TRACTEBEL/EDF开发的EUROSTAG,巴西CEPEL的ANATEM及联邦德国的VISTA程序[30]和比利时的STAG程序[31]等。这些程序除可用于分析故障后转子的摇摆过程外,还可用于各种动态行为分析,它们已成为规划和运行人员进行离线暂态稳定分析、安全备用配置、输电功率极限估计的有力工具。另一种方法是直接法,它不需要求解微分方程组,而是通过构造一个类似于“能量”的标量函数,即李雅普诺夫函数,并通过检查该函数的时变性来确定非线性系统的稳定性质,因此它是一种定性的方法。由于构造李雅普诺夫函数比较困难,因此目前电力系统暂态稳定分析的直接法仅限于比较简单的数学模型,或用暂态能量函数近似李雅普诺夫函数,因此其分析结果尚不能令人完全满意。本章首先介绍暂态稳定分析中全系统数学校型的构成和微分-代数方程组的数值求解方法,然后叙述各动态元件与电力网络的连接以及网络操作及故障的处理方法。接着对简单模型和带有FACTS元件的详细模型下的电力系统暂态稳定分析算法分别进行了详细论述。最后介绍暂态稳定分析的直接法。6.2暂态稳定分析数值求解方法[25]电力系统的暂态稳定分析可以归结为微分-代数方程组的初值问题。本节我们首先介绍常微分方程的数值解法,然后讨论微分-代数方程组的数值解法,最后给出暂态稳定分析的基本流程。6.2.1常微分方程的数值解法[1,14~16]1.基本概念考虑一阶微分方程一般地讲,上式中f是x、t的非线性函数。在很多工程实际问题中,函数f中不显含时间变量f,因此往往表现为以下的形式:在电力系统稳定计算中,所有微分方程都不显含时间变量t。当式(6-4)中的f为t的线性函数时,可以很容易地得到微分方程解的解析表达式。例如,对微分方程式可以求出它的通解为式中:A为积分常数。式(6-6)表示了一个曲线族。根据初始条件00)(xtx可以确定x随t变化规律的一条曲线。例如,当1)0(x时,从式(6-6)即可确定积分常数1A,这样就得到了确定的解(或积分曲线)工程实际问题所表现出来的微分方程比较复杂,其函数往往是多元非线性的,因此一般不能用解析的形式求出像式(6—6)那样的通解,而只能用数值解法。即从已知的初始状态(0tt,0xx)开始,利用某种数值积分公式离散地逐点求出时间序列nhttn0,1n,2,…(h为步长)相对应的函数的近似值:nx。对微分方程的这种数值解法称为逐步积分法。以下我们以欧拉法为例子说明逐步积分法的基本概念。设一阶微分方程式(6-3)在:。00t、00)(xtx时的准确解为这一函数曲线,即微分方程式(6-3)通过点(0,x0)的积分曲线如图6-2所示。欧拉法又称为欧拉切线法或欧拉折线法。它的基本思想是将积分曲线用折线来代替,而每段直线的斜率都由该段的初值代入式(6-3)求得。具体推算步骤如下:对于第一段,在点(0,x0)处曲线的斜率为将第一段曲线用斜率为0dtdx的直线段来代替,则可以
本文标题:第六章电力系统暂态稳定分析
链接地址:https://www.777doc.com/doc-2088468 .html