您好,欢迎访问三七文档
1线性代数练习题第一章行列式系专业班姓名学号第一节n阶行列式一.选择题1.若行列式x52231521=0,则x[C](A)2(B)2(C)3(D)32.线性方程组473322121xxxx,则方程组的解),(21xx=[C](A)(13,5)(B)(13,5)(C)(13,5)(D)(5,13)3.方程093142112xx根的个数是[C](A)0(B)1(C)2(D)34.下列构成六阶行列式展开式的各项中,取“+”的有[A](A)665144322315aaaaaa(B)655344322611aaaaaa(C)346542165321aaaaaa(D)266544133251aaaaaa5.若55443211)541()1(aaaaalklkN是五阶行列式ija的一项,则lk,的值及该项的符号为[B](A)3,2lk,符号为正;(B)3,2lk,符号为负;(C)2,3lk,符号为正;(D)2,3lk,符号为负6.下列n(n2)阶行列式的值必为零的是[BD](A)行列式主对角线上的元素全为零(B)三角形行列式主对角线上有一个元素为零(C)行列式零的元素的个数多于n个(D)行列式非零元素的个数小于n个二、填空题1.行列式1221kk0的充分必要条件是3,1kk2.排列36715284的逆序数是133.已知排列397461tsr为奇排列,则r=2,8,5s=5,2,8,t=8,5,224.在六阶行列式ija中,623551461423aaaaaa应取的符号为负。三、计算下列行列式:1.132213321=182.598413111=53.yxyxxyxyyxyx332()xy4.0001100000100100=15.000100002000010nn1(1)!nn6.00011,22111,111nnnnaaaaaa(1)212,11(1)nnnnnaaa3线性代数练习题第一章行列式系专业班姓名学号第二节行列式的性质一、选择题:1.如果1333231232221131211aaaaaaaaaD,3332313123222121131211111232423242324aaaaaaaaaaaaD,则1D[C](A)8(B)12(C)24(D)242.如果3333231232221131211aaaaaaaaaD,2323331322223212212131111352352352aaaaaaaaaaaaD,则1D[B](A)18(B)18(C)9(D)273.2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(ddddccccbbbbaaaa=[C](A)8(B)2(C)0(D)6二、选择题:1.行列式30092280923621534215122460002.行列式1110110110110111-32.多项式0211111)(321321321321xaaaaxaaaaxaaaaxf的所有根是0,1,23.若方程225143214343314321xx=0,则1,3xx44.行列式2100121001210012D5三、计算下列行列式:1.260523211213141221214150620.12325062rr2.xaaaxaaax1[(1)]().nxnaxa5线性代数练习题第一章行列式系专业班姓名学号第三节行列式按行(列)展开一、选择题:1.若111111111111101xA,则A中x的一次项系数是[D](A)1(B)1(C)4(D)42.4阶行列式4433221100000000ababbaba的值等于[D](A)43214321bbbbaaaa(B)))((43432121bbaabbaa(C)43214321bbbbaaaa(D)))((41413232bbaabbaa3.如果122211211aaaa,则方程组0022221211212111bxaxabxaxa的解是[B](A)2221211ababx,2211112babax(B)2221211ababx,2211112babax(C)2221211ababx,2211112babax(D)2221211ababx,2211112babax二、填空题:1.行列式122305403中元素3的代数余子式是-62.设行列式4321630211118751D,设jjAM44,分布是元素ja4的余子式和代数余子式,则44434241AAAA=0,44434241MMMM=-6663.已知四阶行列D中第三列元素依次为1,2,0,1,它们的余子式依次分布为5,3,,74,则D=-15三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.3112.12111111111naaa=121111011101110111naaa=121111100100100naaa21111211111001001000nccaaaaa1112232111111000010000naaccaaaa71112110111100000000niniiiaaacaca1211()(1)nniiaaaa或121123113111111000000nnarrarrarraaaa2112112123111110000000naaaaaaccaaaa111223133111111000000000niinnnaaaccaaaccaaaa1122()(1)nniiaaaaa或11221121121110111110111111111(1).nnnnnniiaaaaaaDaaaaaaa8线性代数练习题第一章行列式系专业班姓名学号综合练习一、选择题:1.如果0333231232221131211MaaaaaaaaaD,则3332312322211312111222222222aaaaaaaaaD=[C](A)2M(B)-2M(C)8M(D)-8M2.若xxxxxxf171341073221)(,则2x项的系数是[A](A)34(B)25(C)74(D)6二、选择题:1.若54435231aaaaaji为五阶行列式带正号的一项,则i=2j=12.设行列式275620513D,则第三行各元素余子式之和的值为8。三、计算行列式1111111111111111xxxx解:11111111111111111111111111111111xxxxDxxxx41001001001000xxxxx四、计算n阶行列式xyyxxyxyxDn0000000000000000解:11()nnnnDxy
本文标题:行列式习题答案
链接地址:https://www.777doc.com/doc-2090465 .html