您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 第十章统计与统计案例
第一节随机抽样考纲要求:1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样.1.简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样(1)定义:在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样).(2)适用范围:适用于元素个数很多且均衡的总体抽样.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.[自我查验]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次被抽到的可能性最大.()(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.()(3)系统抽样适用于元素个数很多且均衡的总体.()(4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(6)某校即将召开学生代表大会,现从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.()答案:(1)×(2)×(3)√(4)×(5)×(6)√2.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,在分层抽样、系统抽样、简单随机抽样三种抽样中,不放回抽样的有()A.0个B.1个C.2个D.3个解析:选D三种抽样都是不放回抽样.3.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________.(下面摘取了随机数表第7行至第9行)874217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954答案:0684.某工厂平均每天生产某种机器零件大约10000件,要求产品检验员每天抽取50件零件,检查其质量状况,采用系统抽样方法抽取,若抽取的第一组中的号码为0010,则第三组抽取的号码为________.答案:04105.某校高中生有900名,其中高一有400名,高二有300名,高三有200名,打算抽取容量为45的一个样本,则高三学生应抽取________人.答案:10[典题1](1)下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.01[听前试做](1)选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.(2)由题意知前5个个体的编号为08,02,14,07,01.答案:(1)D(2)D(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.[典题2](1)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11B.12C.13D.14[听前试做](1)由100040=25,可得分段间隔为25.(2)由系统抽样定义可知,所分组距为84042=20,每组抽取一个,因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.答案:(1)C(2)B[探究1]本例(2)中条件不变,若第三组抽得的号码为44,则在第八组中抽得的号码是________.解析:在第八组中抽得的号码为(8-3)×20+44=144.答案:144[探究2]本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________.解析:因为在编号[481,720]中共有720-480=240人,又在[481,720]中抽取8人,所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.答案:28解决系统抽样问题的两个关键步骤(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.(2015·湖南高考)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解析:35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.答案:4分层抽样是三种抽样方法中最重要的一种抽样方法,也是高考命题的热点,多以选择题或填空题的形式出现,试题难度不大,多为容易题或中档题,且主要有以下几个命题角度:角度一:计算某一层应抽取的样本数[典题3](1)(2015·北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.300(2)(2015·福建高考)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.[听前试做](1)设该样本中的老年教师人数为x,由题意及分层抽样的特点得x900=3201600,故x=180.(2)设男生抽取x人,则有45900=x900-400,解得x=25.答案:(1)C(2)25进行分层抽样的相关计算时,常利用以下关系式巧解:(1)样本容量n总体的个数N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.角度二:求样本容量[典题4](1)(2016·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=()A.54B.90C.45D.126(2)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人).篮球组书画组乐器组高一4530a高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.(3)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.(4)某市有A、B、C三所学校,共有高三文科学生1500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取________人.[听前试做](1)依题意得33+5+7×n=18,解得n=90,即样本容量为90.(2)由题意知1245+15=30120+a,解得a=30.(3)分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件.在4800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1800件.(4)设A、B、C三所学校高三文科学生人数分别为x,y,z,由题知x,y,z成等差数列,所以x+z=2y,又x+y+z=1500,所以y=500,用分层抽样方法抽取B校学生人数为1201500×500=40.答案:(1)B(2)30(3)1800(4)40进行分层抽样时应注意以下几点(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.(4)抽样比=样本容量总体容量=各层样本数量各层个体数量.—————————————[课堂归纳——感悟提升]——————————————[方法技巧]三种抽样方法中简单随机抽样是最基本的抽样方法,是其他两种方法的基础,适用范围不同,要根据总体的具体情况选用不同的方法;它们的共同点都是等概率抽样,即抽样过程中每个个体被抽取的概率相等,体现了这三种抽样方法的客观性和公平性,若样本容量为n,总体的个体数为N,则用这三种方法抽样时,每一个个体被抽到的概率都是nN.[易错防范]应用分层抽样应遵循的三点:(1)分层,将相似的个体归为一类,即为一层,分层要求每层的各个个体互不交叉,即不重复不遗漏.(2)分层保证每个个体等可能被抽取,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.(3)若各层应抽取的个体数不都是整数,则应当调整样本容量,先剔除“多余”的个体.[全盘巩固]一、选择题1.某学校为了了解某年高考数学的考试成绩,在高考后对该校1200名考生进行抽样调查,其中有400名文科考生,600名理科考生,200名艺术和体育类考生,从中抽取120名考生作为样本,记这项调查为①;从10名家长中随机抽取3名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法解析:选B在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取的样本个数较少,宜采用简单随机抽样法.2.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号学生在样本中,那么样本中还有一个学生的学号是()A.10B.11C.12D.16解析:选D从被抽中的3名学生
本文标题:第十章统计与统计案例
链接地址:https://www.777doc.com/doc-2091525 .html