您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015-2016学年广东省广州市番禺区八年级(上)期末数学试卷
第1页(共23页)2015-2016学年广东省广州市番禺区八年级(上)期末数学试卷一.选择题1.计算(﹣a3)3的结果正确是()A.﹣a3B.﹣a6C.﹣a9D.a92.若等腰三角形的底角为40°,则它的顶角度数为()A.40°B.100°C.80°D.70°3.下列几何图形中,一定是轴对称图形的有()A.5个B.4个C.3个D.2个4.下列运算正确的是()A.x2÷x2=1B.(﹣a2b)3=a6b3C.(﹣3x)0=﹣1D.(x+3)2=x2+95.如图,AB∥CD,∠D=∠E=30°,则∠B的度数为()A.50°B.60°C.70°D.80°6.要时分式有意义,则x应满足的条件为()A.x≠2B.x≠0C.x≠±2D.x≠﹣27.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=5.则CE的长为()第2页(共23页)A.20B.12C.10D.88.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.9.已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5B.5C.﹣D.10.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.70°B.65°C.50°D.25°二、填空题11.计算:a﹣2÷a﹣5=.12.分解因式:a2+2a+1=.13.化简:=.14.若等腰三角形两边长分别为3和5,则它的周长是.15.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为.第3页(共23页)16.如图,CD与BE互相垂直平分,AD⊥DB,交BE延长线于点A,连接AC,已知∠BDE=70°,则∠CAD=.三.解答题17.分解因式:(1)ax﹣ay;(2)x2﹣y4;(3)﹣x2+4xy﹣4y2.18.如图,点A、F、C、D在同一直线上,点B和E分别在直线AD的两侧,AB∥DE且AB=DE,AF=DC.求证:(1)AC=DF;(2)BC∥EF.19.如图,有分别过A、B两个加油站的公路l1、l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路l1、l2的距离也相等.请用尺规作图作出点P(不写作法,保留作图痕迹)第4页(共23页)20.在如图所示的方格纸中.(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移变换得到的?(3)若点A在直角坐标系中的坐标为(﹣1,3),试写出A1、B1、C2坐标.21.已知=,求的值.22.(1)计算:(7x2y3﹣8x3y2z)÷8x2y2;(2)解分式方程:.23.如图,在△ABC中,AB=c,AC=b.AD是△ABC的角平分线,DE⊥A于E,DF⊥AC于F,EF与AD相交于O,已知△ADC的面积为1.(1)证明:DE=DF;(2)试探究线段EF和AD是否垂直?并说明理由;(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.24.为了“绿色出行”,减少雾霾,家住番禺在广州中心城区上班的王经理,上班出行由自驾车改为乘坐地铁出行,已知王经理家距上班地点21千米,他用地铁方式平均每小时出行的路程,比他用自驾车平均每小时行驶的路程的2倍还多5千米,他从家出发到达上班地点,地铁出行所用时间是自驾车方式所用时间的.求王经理地铁出行方式上班的平均速度.第5页(共23页)25.△ABC为等腰直角三角形,∠ABC=90°,点D在AB边上(不与点A、B重合),以CD为腰作等腰直角△CDE,∠DCE=90°.(1)如图1,作EF⊥BC于F,求证:△DBC≌△CFE;(2)在图1中,连接AE交BC于M,求的值;(3)如图2,过点E作EH⊥CE交CB的延长线于点H,过点D作DG⊥DC,交AC于点G,连接GH.当点D在边AB上运动时,式子的值会发生变化吗?若不变,求出该值;若变化请说明理由.第6页(共23页)2015-2016学年广东省广州市番禺区八年级(上)期末数学试卷参考答案与试题解析一.选择题1.计算(﹣a3)3的结果正确是()A.﹣a3B.﹣a6C.﹣a9D.a9【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣a3)3=﹣a9.故选;C.【点评】此题主要考查了积的乘方运算法则,正确掌握运算法则是解题关键.2.若等腰三角形的底角为40°,则它的顶角度数为()A.40°B.100°C.80°D.70°【考点】等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为底角是40°,所以其顶角为180°﹣40°﹣40°=100°.故选B【点评】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.第7页(共23页)3.下列几何图形中,一定是轴对称图形的有()A.5个B.4个C.3个D.2个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:圆弧、角、扇形、菱形、等腰梯形一定是轴对称图形,共5个.故选:A.【点评】此题主要考查了轴对称图形,关键是找出对称轴.4.下列运算正确的是()A.x2÷x2=1B.(﹣a2b)3=a6b3C.(﹣3x)0=﹣1D.(x+3)2=x2+9【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式;零指数幂.【分析】直接利用同底数幂的除法的性质、积的乘方与幂的乘方的性质、零指数幂的性质以及完全平方公式的知识求解即可求得答案.【解答】解:A、x2÷x2=1,故本选项正确;B、(﹣a2b)3=﹣a6b3,故本选项错误;C、(﹣3x)0=﹣1(x≠0),少条件;故本选项错误;D、(x+3)2=x2+6x+9,故本选项错误.故选A.【点评】此题考查了同底数幂的除法、积的乘方与幂的乘方、零指数幂的性质以及完全平方公式.注意掌握指数与符号的变化是解此题的关键.5.如图,AB∥CD,∠D=∠E=30°,则∠B的度数为()第8页(共23页)A.50°B.60°C.70°D.80°【考点】平行线的性质.【分析】利用三角形外角的性质得出∠COE的度数,再利用平行线的性质得出∠B的度数.【解答】解:如图所示:∵∠D=∠E=30°,∴∠COE=60°,∵AB∥CD,∴∠B=∠COE=60°.故选:B.【点评】此题主要考查了平行线的性质,根据题意得出∠COE的度数是解题关键.6.要时分式有意义,则x应满足的条件为()A.x≠2B.x≠0C.x≠±2D.x≠﹣2【考点】分式有意义的条件.【分析】分式有意义的条件是分母不等于零.【解答】解:∵分式有意义,∴x+2≠0.解得:x≠﹣2.故选:D.第9页(共23页)【点评】本题主要考查的是分式意义的条件,明确分式的分母不为零是解题的关键.7.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=5.则CE的长为()A.20B.12C.10D.8【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】根据直角三角形的性质得到BE=10,根据线段垂直平分线的性质解答即可.【解答】解:∵ED⊥BC,∠B=30°,ED=5,∴EB=2ED=10,∵ED垂直平分BC,∴CE=BE=10,故选:C.【点评】本题考查线段的垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】本题需先根据轴对称图形的有关概念沿某直线折叠后直线两旁的部分互相重合对每一个图形进行分析即可得出正确答案.【解答】解:A∵沿某直线折叠,分成的两部分能互相重合第10页(共23页)∴它是轴对称图形B、∵沿某直线折叠,分成的两部分能互相重合∴它是轴对称图形C、∵沿某直线折叠,分成的两部分能互相重合∴它是轴对称图形D、根据轴对称定义它不是轴对称图形故选D.【点评】本题主要考查了轴对称图形的有关概念,在解题时要注意轴对称图形的概念与实际相结合是本题的关键.9.已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5B.5C.﹣D.【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点P(a,3)、Q(﹣2,b)关于y轴对称,∴a=2,b=3,则==﹣.故选:C.【点评】此题主要考查了关于x,y轴对称点的性质,正确得出a,b的值是解题关键.10.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()A.70°B.65°C.50°D.25°【考点】平行线的性质;翻折变换(折叠问题).第11页(共23页)【分析】由平行可求得∠DEF,又由折叠的性质可得∠DEF=∠D′EF,结合平角可求得∠AED′.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∴∠DEF=∠EFB=65°,又由折叠的性质可得∠D′EF=∠DEF=65°,∴∠AED′=180°﹣65°﹣65°=50°,故选C.【点评】本题主要考查平行线的性质及折叠的性质,掌握两直线平行内错角相等是解题的关键.二、填空题11.计算:a﹣2÷a﹣5=a3.【考点】负整数指数幂.【分析】根据同底数幂的除法法则,底数不变,指数相减即可.【解答】解:原式=a﹣2+5=a3.故答案为:a3.【点评】本题考查的是负整数指数幂,熟知同底数幂的除法法则是解答此题的关键.12.分解因式:a2+2a+1=(a+1)2.【考点】因式分解-运用公式法.【分析】符合完全平方公式的结构特点,利用完全平方公式分解因式即可.【解答】解:a2+2a+1=(a+1)2.【点评】本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.13.化简:=.【考点】约分.【分析】首先把分子分母分解因式,然后再约去公因式x+3即可.【解答】解:原式==,第12页(共23页)故答案为:.【点评】此题主要考查了分式的约分,关键是正确把分子分母分解因式,找出公因式.14.若等腰三角形两边长分别为3和5,则它的周长是11或13.【考点】三角形三边关系;等腰三角形的性质.【专题】分类讨论.【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为17.【考点】作图—基本作图;线段垂直平分线的性质.【分析】首先根据题意可得MN是AB的垂直平分线,由线段垂直平分线的性质可得AD=BD,再根据△ADC的周长为10可得AC+BC=10,又由条件AB=7可得△ABC的周长.【解答】解:∵在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的
本文标题:2015-2016学年广东省广州市番禺区八年级(上)期末数学试卷
链接地址:https://www.777doc.com/doc-2106027 .html