您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 数列经典例题[裂项相消法]
word整理版学习好帮手数列裂项相消求和的典型题型1.已知等差数列}{na的前n项和为,15,5,55SaSn则数列}1{1nnaa的前100项和为()A.100101B.99101C.99100D.1011002.数列,)1(1nnan其前n项之和为,109则在平面直角坐标系中,直线0)1(nyxn在y轴上的截距为()A.-10B.-9C.10D.93.等比数列}{na的各项均为正数,且6223219,132aaaaa.(Ⅰ)求数列}{na的通项公式;(Ⅱ)设,logloglog32313nnaaab求数列}1{nb的前n项和.4.正项数列}{na满足02)12(2nanann.(Ⅰ)求数列}{na的通项公式na;(Ⅱ)令,)1(1nnanb求数列}{nb的前n项和nT.5.设等差数列}{na的前n项和为nS,且12,4224nnaaSS.(Ⅰ)求数列}{na的通项公式;(Ⅱ)设数列}{nb满足,,211*2211Nnabababnnn求}{nb的前n项和nT.6.已知等差数列}{na满足:26,7753aaa.}{na的前n项和为nS.(Ⅰ)求na及nS;(Ⅱ)令),(11*2Nnabnn求数列}{nb的前n项和nT.7.在数列}{na中nnanaa211)11(2,1,.(Ⅰ)求}{na的通项公式;word整理版学习好帮手(Ⅱ)令,211nnnaab求数列}{nb的前n项和nS;(Ⅲ)求数列}{na的前n项和nT.8.已知等差数列}{na的前3项和为6,前8项和为﹣4.(Ⅰ)求数列}{na的通项公式;(Ⅱ)设),,0()4(*1Nnqqabnnn求数列}{nb的前n项和nS.9.已知数列}{na满足,2,021aa且对*,Nnm都有211212)(22nmaaanmnm.(Ⅰ)求53,aa;(Ⅱ)设),(*1212Nnaabnnn证明:}{nb是等差数列;(Ⅲ)设),,0()(*11Nnqqaacnnnn求数列}{nc的前n项和nS.10.已知数列}{na是一个公差大于0的等差数列,且满足16,557263aaaa.(Ⅰ)求数列}{na的通项公式;(Ⅱ)数列}{na和数列}{nb满足等式),(2222*33221Nnbbbbannn求数列}{nb的前n项和nS.11.已知等差数列}{na的公差为2,前n项和为nS,且421,,SSS成等比数列.(1)求数列}{na的通项公式;(2)令,4)1(112nnnaanb求数列}{nb的前n项和nT.12.正项数列}{na的前n项和nS满足:0)()1(222nnSnnSnn.(1)求数列}{na的通项公式na;(2)令,)2(122nnannb数列}{nb的前n项和为nT,证明:对于,*Nn都有645nT.答案:1.A;2.B3.解:(Ⅰ)设数列{an}的公比为q,由a32=9a2a6有a32=9a42,∴q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1有2a1+3a1q=1,∴a1=.word整理版学习好帮手故数列{an}的通项式为an=.(Ⅱ)bn=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,∴数列{}的前n项和为﹣.4.解:(Ⅰ)由正项数列{an}满足:﹣(2n﹣1)an﹣2n=0,可有(an﹣2n)(an+1)=0∴an=2n.(Ⅱ)∵an=2n,bn=,∴bn===,Tn===.数列{bn}的前n项和Tn为.5.解:(Ⅰ)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1有:,解有a1=1,d=2.∴an=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,有:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合.word整理版学习好帮手∴=,n∈N*由(Ⅰ)知,an=2n﹣1,n∈N*.∴bn=,n∈N*.又Tn=+++…+,∴Tn=++…++,两式相减有:Tn=+(++…+)﹣=﹣﹣∴Tn=3﹣.6.解:(Ⅰ)设等差数列{an}的公差为d,∵a3=7,a5+a7=26,∴有,解有a1=3,d=2,∴an=3+2(n﹣1)=2n+1;Sn==n2+2n;(Ⅱ)由(Ⅰ)知an=2n+1,∴bn====,∴Tn===,即数列{bn}的前n项和Tn=.7.解:(Ⅰ)由条件有,又n=1时,,word整理版学习好帮手故数列构成首项为1,公式为的等比数列.∴,即.(Ⅱ)由有,,两式相减,有:,∴.(Ⅲ)由有.∴Tn=2Sn+2a1﹣2an+1=.8.解:(Ⅰ)设{an}的公差为d,由已知有解有a1=3,d=﹣1故an=3+(n﹣1)(﹣1)=4﹣n;(Ⅱ)由(Ⅰ)的解答有,bn=n•qn﹣1,于是Sn=1•q0+2•q1+3•q2+…+n•qn﹣1.若q≠1,将上式两边同乘以q,有qSn=1•q1+2•q2+3•q3+…+n•qn.上面两式相减,有(q﹣1)Sn=nqn﹣(1+q+q2+…+qn﹣1)=nqn﹣于是Sn=若q=1,则Sn=1+2+3+…+n=∴,Sn=.9.解:(Ⅰ)由题意,令m=2,n=1,可有a3=2a2﹣a1+2=6word整理版学习好帮手再令m=3,n=1,可有a5=2a3﹣a1+8=20(Ⅱ)当n∈N*时,由已知(以n+2代替m)可有a2n+3+a2n﹣1=2a2n+1+8于是[a2(n+1)+1﹣a2(n+1)﹣1]﹣(a2n+1﹣a2n﹣1)=8即bn+1﹣bn=8∴{bn}是公差为8的等差数列(Ⅲ)由(Ⅰ)(Ⅱ)解答可知{bn}是首项为b1=a3﹣a1=6,公差为8的等差数列则bn=8n﹣2,即a2n+1﹣a2n﹣1=8n﹣2另由已知(令m=1)可有an=﹣(n﹣1)2.∴an+1﹣an=﹣2n+1=﹣2n+1=2n于是cn=2nqn﹣1.当q=1时,Sn=2+4+6++2n=n(n+1)当q≠1时,Sn=2•q0+4•q1+6•q2+…+2n•qn﹣1.两边同乘以q,可有qSn=2•q1+4•q2+6•q3+…+2n•qn.上述两式相减,有(1﹣q)Sn=2(1+q+q2+…+qn﹣1)﹣2nqn=2•﹣2nqn=2•∴Sn=2•综上所述,Sn=.10.解:(Ⅰ)设等差数列{an}的公差为d,则依题意可知d>0由a2+a7=16,有,2a1+7d=16①word整理版学习好帮手由a3a6=55,有(a1+2d)(a1+5d)=55②由①②联立方程求,有d=2,a1=1/d=﹣2,a1=(排除)∴an=1+(n﹣1)•2=2n﹣1(Ⅱ)令cn=,则有an=c1+c2+…+cnan+1=c1+c2+…+cn+1两式相减,有an+1﹣an=cn+1,由(1)有a1=1,an+1﹣an=2∴cn+1=2,即cn=2(n≥2),即当n≥2时,bn=2n+1,又当n=1时,b1=2a1=2∴bn=于是Sn=b1+b2+b3+…+bn=2+23+24+…2n+1=2n+2﹣6,n≥2,.11.解(1)因为S1=a1,S2=2a1+2×12×2=2a1+2,S4=4a1+4×32×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以an=2n-1.(2)bn=(-1)n-14nanan+1=(-1)n-14n(2n-1)(2n+1)=(-1)n-1(12n-1+12n+1).当n为偶数时,Tn=(1+13)-(13+15)+…+(12n-3+12n-1)-(12n-1+12n+1)=1-12n+1=2n2n+1.当n为奇数时,Tn=(1+13)-(13+15)+…-(12n-3+12n-1)+(12n-1+12n+1)=1+12n+1=2n+22n+1.word整理版学习好帮手所以Tn=2n+22n+1,n为奇数,2n2n+1,n为偶数.(或Tn=2n+1+(-1)n-12n+1)12.(1)解由S2n-(n2+n-1)Sn-(n2+n)=0,得[Sn-(n2+n)](Sn+1)=0,由于{an}是正项数列,所以Sn+10.所以Sn=n2+n(n∈N*).n≥2时,an=Sn-Sn-1=2n,n=1时,a1=S1=2适合上式.∴an=2n(n∈N*).(2)证明由an=2n(n∈N*)得bn=n+1(n+2)2a2n=n+14n2(n+2)2=1161n2-1(n+2)2Tn=1161-132+122-142+132-152+…+1(n-1)2-1(n+1)2+1n2-1(n+2)2=1161+122-1(n+1)2-1(n+2)21161+122=564(n∈N*).即对于任意的n∈N*,都有Tn564.
本文标题:数列经典例题[裂项相消法]
链接地址:https://www.777doc.com/doc-2108263 .html