您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 第4章电子技术综合设计_1.
第4章电子技术综合设计4.1直流可调稳压电源设计4.2四路彩灯4.3八路抢答器4.4数字钟4.5音乐教室控制室在这一章里,我们对电子技术课程中的几个典型的综合实例进行设计、分析和仿真,目的在于使读者对模拟电子技术和数字电子技术中常用的仿真元件及仪器有个基本的掌握,帮助大家更好地理解和学习电子技术,同时对Proteus在电子线路设计中的强大功能能够牢固掌握和灵活运用。4.1直流可调稳压电源的设计本节我们一起来设计一个模拟电子技术中常用的电路,通过例子对Proteus各种功能的综合应用更加得心应手。直流稳压电源是大家颇为熟悉的电路了,这里我们设计一个可调直流稳压电源,具体要求如下:输出电压在1.25V~37V可调;最大输出电流为1.5A;电压调整精度达0.1%。1.题目分析直流稳压电源的作用是通过把50Hz的交流电变压、整流、滤波和稳压从而使电路变成恒定的直流电压,供给负载,如图4-1所示。设计出的直流稳压电源应不以电网电压的波动和负载的变换而改变。图4-1直流稳压电源的组成可调式稳压器件LM117/LM317是美国国家半导体公司的三端可调正稳压器集成电路。LM117/LM317的输出电压范围是1.25V至37V,负载电流最大为1.5A。它的使用非常简单,仅需两个外接电阻来设置输出电压。LM117/LM317在1.25V至37V之间连续可调。调整端的电流可忽略不计,因而有其中,UREF是集是稳压器件的输出电压,为1.25V。如图4-2所示,改变R2的值,UO的值即可改变。当R2短路时,UO最小,为UREF即1.25V;当R2大于零时,UO都大于UREF,最大可达37V。2OREF11RUUR=()图4-1三极管元件拾取对话框其中,UREF是集是稳压器件的输出电压,为1.25V。如图4-2所示,改变R2的值,UO的值即可改变。当R2短路时,UO最小,为UREF即1.25V;当R2大于零时,UO都大于UREF,最大可达37V。VI3VO2ADJ1LM317LR1R2(1)变压电路直流电源通常从市电取电,把220V、50Hz的单相交流电先降压,变成所需的交流电,然后再整流。根据桥式整流电路和电容滤波电路的输出与输入电压的比例关系,从输出电压的最大值37V倒推,可以算出所使用的降压变压器的副边电压有效值应为29V左右。从Proteus的元件库中取变压器“TRAN-2P2S”,在原边接交流电源“ALTERNATOR”,原副边分别接交流电压表,且变压器的原副边同时接地,并与后面直流部分电路共地。2.电路设计打开交流电源的属性对话框,把频率改为50Hz,把幅值改为300V左右,运行仿真,观察原边交流电压表的读数,再次修改交流电源的幅值,直到原边电压表的读数为220V为止。打于变压器属性对话框,按照本章前面介绍的变压器的变比与电压的关系,保持原边电感值为1H不变,修改原副边的电感值为0.033H左右,运行仿真,直到副边交流电压表的读数为29V左右。变压电路的仿真图如图4-4所示。图4-4变压电路的仿真图TR1TRAN-2P2SACVolts+28.9220V50HzACVolts+220(2)整流及滤波电路整流采用常用的二极管桥式整流电路。在Proteus的元件库中寻找“BRIDGE”,取出此通用二极管整流桥,放置在电路中,注意接法。根据经验,一般滤波电路常用的滤波电容有2200μF和1100μF两种,但要注意它的耐压值要大于电路中所承受的电压,并注意电压的极性的接法是上正下负,如图4-5所示。图4-5整流及滤波电路BR12W005GC12200uFD1R17.5k如果要详细计算滤波所需的电容值,可采用以下公式:全波整流半波整流式中,VM为滤波之后的最大电压,Vγ为滤波之后的波纹电压,即最大电压与最小电压的差值,R为负载电阻,f为工频50Hz。Mγ2VCfRVMγVCfRV(3)集成稳压电路集成稳压电路的核心器件是LM317,在实际应用中要注意加装散热片。为了保护集成器件在接反的状态下不被烧毁,在输入、输出端之间以及输出与调节端之间分别接反向保护二极管1N4003,如图4-6所示。VI3VO2ADJ1U1LM317LD1R17.5kC210uFR2200D2D3C3100uFVolts+33.5100%RV45.1k图4-6集成稳压电路一般设R2为100~200Ω,典型值为120Ω,这里设为200Ω。在实际接线时,这个电阻应尽可能地靠近LM317元件来接,因为本应是LM317内部电阻。由上面的公式算出滑动变阻器的最大值为4.92kΩ,取典型值4.1kΩ,这样最大值达不到37V,理论上只有32V左右,仿真时显示为33.5V,有些误差,并且最小值也比1.25V小。电容C2和C3分别为去抖和滤波作用。C2并联在滑动变阻器两端,可防止滑动变阻器在调节过程中由于抖动而产生的谐波,一般经验值为10μF。C3为输出侧二次滤波,其目的是去掉输出电压波形中细小的波纹。C1与C3的关系一般为22倍。4422001.2537RRVRV45.92kRV可调直流稳压电源的完整电路如图4-7所示。图4-7直流可调稳压电源完整电路BR12W005GTR1TRAN-2P2SACVolts+27.5C12200uFVI3VO2ADJ1U1LM317LD1R17.5kC210uFR2200D2D3C3100uFVolts+5.00220V50Hz28V50HzACVolts+22057%RV45.1k4.2四路彩灯四路彩灯是数字电路设计中一个非常有趣的课题,结合Proteus会使整个设计和分析快捷而轻松。题目设计要求如下:共有四个彩灯,分别实现三个过程,构成一个循环共12秒;第一个过程要求四个灯依次点亮,共4秒;第二个过程要求四个灯依次熄灭,共4秒,先亮者后灭;最后4秒要求四个灯同时亮一下灭一下,共闪4下。4.2.1核心器件74LS194简介其实这个题目主要考察的是四位双向通用移位寄存器74LS194的灵活应用,四个灯可用四个发光二极管表示。74LS194的引脚图如图4-8所示。图4-5变压器属性对话框图4-974LS194的时序图图4-8中引脚MR为复位信号,正常工作时应接高电平;CLK为时钟信号,上升沿到来时有效。74LS194的时序图如图4-9所示。74LS194有四种工作方式,分别由S1S0组成的两位二进制数来控制,如表4-1所示。表4-174LS194的四种工作方式S1S0输出Q0~Q3数据输入00保持不变×01右移SR10左移SL11并行输出D0~D3表4-274LS194的功能表输入输出功能时钟复位控制串入并入Q0Q1Q2Q3CPCrS1S0DSLDSRD0D1D2D3X0XXXXXXXX0000清零↑111XXD0D1D2D3D0D1D2D3置数↑110DXXXXXQ1Q2Q3D左移↑101XDXXXXDQ0Q1Q2右移↑100XXXXXXQ0Q1Q2D3保持4.2.2题目分析与设计此题应把四路彩灯接在74LS194的Q0~Q3上,SR稳定接一高电平,SL稳定接地电位,而D0~D3接周期为1秒的方波信号。下面关键是时钟和方式控制S1S0的信号如何实现才能满足题目的要求。三个过程每个4秒,加起来正好12秒。如果选择CLK为周期1s的方波信号,好像就可以了,但是前两个过程可以,最后一个过程却不能精确地实现。图4-10是正确的CLK信号与1Hz方波信号的比较。前面我们已经确定D0~D3接1Hz的方波信号,那么Q0~Q3在读D0~D3的信号时是在CLK上升沿到来的一瞬间,看图4-10的前半部分,如果二者一样,CLK的每个上升沿到来时读到的都是高电平,灯就会一直亮着,不会出现闪的效果。所以,当74LS194的工作方式为11时,一定要改变CLK的信号频率为D0~D3信号频率的2倍,才可以在D0~D3的一个周期内出现CLK的两个上升沿,Q0~Q3分别读到1和0各一次,如图4-10的后半部分。图4-10正确的CLK信号与1Hz方波信号的比较正确的时钟信号在整个12秒时间应该是前8秒为1Hz的频率,后4秒变为2Hz的频率,可以用555定时器产生2Hz的方波信号,再用D触发器分频产生1Hz的方波信号,如图4-11所示。二者分别与控制信号相与再通过或门即可得到CLK信号。图4-11用555产生的2Hz及1Hz方波信号下面再来分析S1S0的信号。四种工作方式中剔除第一种S1S0为00的情况,那么S1S0应按01、10、11的顺序循环,可设计一个同步计数器,时钟周期为4秒,共三个状态。S1及S0的波形应如图4-12所示。S1S0与非及相与的结果如图中后两个信号,正好用来分别锁定1Hz及2Hz信号,分别与它们相与后再进入或门,即产生了正确的时钟信号,如图4-12所示。图4-12S1及S0的波形图S1S0信号的产生使用D触发器来设计一个同步三进制计数器,时钟周期为4秒。设计步骤如下:(1)列状态真值表。设S1S0对应的触发器输出分别为Q1Q0,则状态真值表如表4-3所示。Q1nQ0nQ1n+1Q0n+100××011010111101表4-374状态真值表(2)求状态方程。根据列出的状态真值表,分别求出Q1和Q0的状态方程为1110QQQn101QQn(3)求驱动方程。由D触发器的特性方程可直接写出驱动方程为110DQQ01DQ(4)电路实现。根据驱动方程,连接电路如图4-13所示。因为我们设计出的是一个同步时序逻辑电路,注意图中两个D触发器的时钟连接在一起接周期为4秒的时钟信号。这部分电路也可以直接用集成计数器来完成,见后面。图4-13产生S1S0的三进制同步计数•根据以上分析,连接电路如图4-14所示,其中省去了555及二分频电路,直接用数字脉冲源进行仿真。另外,图中所有D触发器的异步输入端在实际电路连接时最好接高电平。产生时钟的电路用与非与非逻辑替代了与或逻辑,因为与非门的应用最普遍。•平时我们在设计电路时,通过卡诺图化简得到的与或式,要想全部用与非门实现,可在草纸上直接画成与或逻辑,然后只需要在与门的输出端与此线的另一头即或门的输入端各加一个小圆圈,两个逻辑非抵消,不影响逻辑关系,直到把或门的输入处理完毕为止。这样或门前面的与门都变成了与非门,或门变成了非或门,而根据摩根定理,非或门恒等于与非门。图4-14中的U4:B、U4:C和U4:D就是用与非与非逻辑实现的与或逻辑。4.2.3仿真图4-12单管共射放大器及负反馈实验电路图4.2.4扩展电路•下面我们重点来分析一下八路彩灯的实现方法。要求和上例一样,八个灯从左到右依次点亮,各一秒,共八秒;接下来八个灯从右到左依次熄灭,各一秒,共8秒;最后八个灯同时闪烁八次,也是八秒。共24秒。•因为前例中我们已经做了详细的分析,这里的灯的动作流程没有什么变化,只不过要把两片74LS194连接成一个整体,接收统一的指令来工作。另外我们把它们的移位方式控制信号S1S0的产生电路变成易于实现的集成电路来完成。图4-15是已设计完成的仿真电路图。图4-15八路彩灯的仿真图计数器74190是一个中规模集成、十进制可逆计数器,通过或门把它接成一个模三的计数器,即当输出为0100时,装入数据0001,构成循环0001→0010→0011→0001。74190的Q1Q0输出作为两片74LS194的移位方式控制信号S1S0,把两片74LS194的S1和S0分别并起来后再接这两个信号。图中74190接成了加计数的形式。再来看一看两片74LS194是如何连接的。首先把两个芯片的时钟并在起,接成同步时序电路。接着把两个芯片的并行数据输入端D3D2D1D0全部连接在一起外接一个周期为一秒的方波信号,实现八个灯一起闪烁。最后是左移和右移信号的处理。上面的芯片所驱动的灯先依次点亮,所以右移时的输入信号应从它的SR输入,接高电平;把上面的芯片的输出Q3接下面芯片的SR,这样右移时的信号就可以从第一个芯片的Q0一直传递到第二个芯片的Q3了。
本文标题:第4章电子技术综合设计_1.
链接地址:https://www.777doc.com/doc-2109869 .html