您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 自动控制原理第三章课后答案
3-1设温度计需要在一分钟内指示出响应值的98%,并且假设温度计为一阶系统,求时间常数T。如果将温度计放在澡盆内,澡盆的温度以10C/min的速度线性变化。求温度计的误差。解:c(t)=c(∞)98%t=4T=1minr(t)=10te(t)=r(t)-c(t)c(t)=10(t-T+e)-t/Tc(t)=10(t-T+e)-t/T=10(T-e)-t/T=10(T-e)-t/T=10T=2.5T=0.253-2电路系统如图所示,其中FCkRkR5.2,200,20110。设系统初始状态为零,试求:系统的单位阶跃响应8)()(1tutucc以及时的1t值;解:R1Cs+1R1/R0G(s)=R1Cs+1R1/R0G(s)=uc(t)=K(1–etT-)uc(t)=K(1–etT-uc(t)=K(1–etT-)KTs+1=KTs+1=T=R1C=0.5K=R1/R0=10=10(1–e-2t)=10(1–e-2t)8=10(1–e-2t)8=10(1–e-2t)0.8=1–e-2t0.8=1–e-2te-2t=0.2e-2t=0.2t=0.8g(t)=e-t/TTKg(t)=e-t/TTKt1=0.8=4uc(t)=K(t-T+Te-t/T)=4R(s)=1s2R(s)=1s2R(s)=1R(s)=1s3R(s)=1s3T2=K(ss+1/T+Ts2-1s3-T2)T2=K(ss+1/T+Ts2-1s3-T2)=1.21s3KTs+1Uc(s)=1s3KTs+1Uc(s)=-0.5t+0.25-0.25e-2t)12t2uc(t)=10(-0.5t+0.25-0.25e-2t)12t2uc(t)=10(3-3已知单位反馈系统的开环传递函数为)5(4)(sssG试求该系统的单位阶跃响应。解:=s2+5s+4C(s)R(s)4=s2+5s+4C(s)R(s)4s(s+1)(s+4)C(s)=4s(s+1)(s+4)C(s)=4R(s)=s1R(s)=s11/3s+41s+=4/3s+1-1/3s+41s+=4/3s+1-13c(t)=1+-4t-t43-ee13c(t)=1+-4t-t43-ee3-4已知单位负反馈系统的开环传递函数为)1(1)(sssG试求该系统的上升时间rt。、峰值时间pt、超调量%和调整时间st。1s(s+1)G(s)=1s(s+1)G(s)=tp=dωπ3.140.866==3.63tp=dωπtp=dωdωπ3.140.866==3.63ts=ζ3ωn=6ts=ζ3ωnts=ζ3ωnζ3ωnωn=6ts=ζ4ωn=8ts=ζ4ωnts=ζ4ωnζ4ωnωn=8解:=s2+s+1C(s)R(s)1=s2+s+1C(s)R(s)12=1ωn2=1ωn2ωnζ=12ωnζ=1ζ=0.5=1ωn=1ωn=0.866dω=ωn2ζ1-=0.866dω=ωn2ζ1-=60o-1ζ=tgβ21-ζ=60o-1ζ=tgβ21-ζ-1ζ=tgβ21-ζ21-ζtr=dωπβ-=3.14-3.14/30.866=2.42tr=dωπβ-tr=dωdωπβ-=3.14-3.14/30.866=2.42σ%=100%e-ζζπ1-2σ%=100%e-ζζπ1-2-ζζπ1-2=16%-1.8e-1.8e3-6已知系统的单位阶跃响应为tteetc10602.12.01)(,试求:(1)系统的闭环传递函数;(2)系统的阻尼比和无阻尼自然震荡频率n;解:0.2s+601s+C(s)=1.2s+10-0.2s+601s+C(s)=1.2s+10-s(s+60)(s+10)=600s(s+60)(s+10)=600=s2+70s+600C(s)R(s)600=s2+70s+600C(s)R(s)600R(s)=s1R(s)=s12=600ωn2=600ωn2ωnζ=702ωnζ=70ζ=1.43=24.5ωn=24.5ωn3-7设二阶控制系统的单位阶跃响应曲线如图所示,如果该系统为单位负反馈系统,试确定其开环传递函数。tc(t)010.11.3tc(t)0tc(t)010.11.39.862ζ=1.42-1.422ζ9.862ζ=1.42-1.422ζζ=0.35ωnωnζs(s+2)G(s)=2ωnωnζs(s+2)G(s)=21115.6s(s+22.7)=1115.6s(s+22.7)=解:tp==0.121-ζπωntp==0.121-ζ21-ζπωnωn=0.3e-ζζπ1-2=0.3e-ζζπ1-2e-ζζπ1-2-ζζπ1-2eζζπ1-2=3.3eζζπ1-2=3.3ωn2ζ1-3.140.1==31.4ωn2ζ1-3.140.1==31.421-ζπ/ζ=ln3.3=1.1921-ζ21-ζπ/ζ=ln3.3=1.1921-ζπ)2/ζ(=1.4221-ζπ)2/ζ(=1.42=33.4ωn=33.4ωn3-8已知单位反馈系统的开环传递函数)1()(TssKsG试选择参数K及T值以满足下列指标:(1)当r(t)=t时,系统的稳态误差02.0sse;(2)当r(t)=1(t)时,系统的动态性能指标%)5(3.0sts。计算的最后结果:K=60,T=0.02s3-11闭环系统的特征方程如下,试用劳斯判据判断系统的稳定性。(a)010092023sss(b)020092023sss(c)0516188234ssss(d)012362345sssss(1)s3+20s2+9s+100=0解:劳斯表如下:s1s0s3s219201004100系统稳定。(3)s4+8s3+18s2+16s+5=01185s4s3816劳斯表如下:s2165s12161621616s05系统稳定。(a)稳定,(b)不稳定,(c)稳定,(d)不稳定;3-13已知系统结构如图所示。试问τ取值多少,系统才能稳定?-1s1+τs-10s(s+1)R(s)C(s)-1s1+1s1+τs-10s(s+1)R(s)C(s)解:G(s)=s2+s+1010(1+sτ)s1G(s)=s2+s+1010(1+sτ)sG(s)=s2+s+1010(1+sτ)s1=s(s2+s+1010(s+1)sτ)=s(s2+s+1010(s+1)sτ)Φ(s)=s3+s2+1010(s+1)s2+10s+10τΦ(s)=s3+s2+1010(s+1)s2+10s+10τ110s3s2(1+10τ)10(1+10τ)10s1b31s010b31=10(1+10τ)-101+10τb31=10(1+10τ)-101+10τ0τ0τ03-14已知系统结构如图所示。确定系统稳定时τ的取值。R(s)-τs+1s10s(s+1)C(s)R(s)-τs+1sτs+1τs+1s10s(s+1)C(s)解:G(s)=s2(s+1)10(τs+1)G(s)=s2(s+1)10(τs+1)Φ(s)=s3+s2+10s+10τ10(τs+1)Φ(s)=s3+s2+10s+10τ10(τs+1)s3s2110110τ110τs1b31s010b31=10τ-101b31=10τ-1010τ1τ1计算的最后结果:13-15试确定图所示系统参数K和的稳定域。计算的最后结果:2000K;3-16已知单位反馈控制系统的开环传递函数如下。试求各系统的静态位置误差系数Kp、速度误差系数Kv和加速度误差系数Ka,并确定当输入信号分别为r(t)=1(t),2t,t2和1+2t+t2时系统的稳态误差ess。(1)G(s)=)12.0)(11.0(20ss;(2)G(s)=)10)(2(200sss;(3)G(s)=)104()12(1022ssss;(4)G(s)=)2)(12()13(52ssss;;解题过程与步骤:解:r(t)=I(t)+2t+t2s2R(s)=1s2+s32+s2R(s)=1s2+s32+s2(s2+4s+10)(3)G(s)=10(2s+1)s2(s2+4s+10)(3)G(s)=10(2s+1)υ=2Kp=∞ess1=0s2(0.1s2+0.4s+1)=(2s+1)s2(0.1s2+0.4s+1)=(2s+1)Kυ=∞Kυ=∞ess2=0Ka=1ess3=2ess=2计算的最后结果:(1)和,,211;0,0,20ssavpeKKK;(2)和,2.0,0;0,10,ssavpeKKK;(3)22,0,0;1,,和ssavpeKKK;(4)系统不稳定;3-17一闭环系统的动态结构如图所示。(1)当R(s)=s1,超调量p%=20%,调整时间ts=1.8s(=5%)时,试确定参数1K和τ的值。(2)当输入信号分别为:r(t)=1(t),r(t)=t,r(t)=21t2时,试求系统的稳态误差-R(s)-K1τs1s2C(s)-R(s)-K1τs1s2C(s)解:G(s)=s2+K1sτK1G(s)=s2+K1sτK1Φ(s)=s2+K1s+K1τK1Φ(s)=s2+K1s+K1τK12ωnζ=K1τ2ωnζ=K1τ2=K1ωn2=K1ωn=0.2e-ζζπ1-2=0.2e-ζζπ1-2e-ζζπ1-2-ζζπ1-2ts=ζ3ωn=1.8ts=ζ3ωnts=ζ3ωnζ3ωnωn=1.8ζ=0.45ωn31.8*0.45=ωn31.8*0.45==3.72ωnK1=2ωnK1==13.7τ=0.24G(s)=s2+K1sτK1G(s)=s2+K1sτK1=s(s+1)τK11τ1=s(s+1)τK11τ1υ=1Kp=∞ess1=0R(s)=1sR(s)=1sR(s)=s21R(s)=s21Kυ=KKυ=Kess2=τess2=τR(s)=s31R(s)=s31Ka=0ess3=∞计算的最后结果:(1)K1=13.36,τ=0.2;(2)0sse,2.0sse,sse;3-18已知系统的结构图如图所示。欲保证阻尼比=0.7和单位斜坡函数输入时稳态误差ess=0.25,试确定参数K和τ的取值。-τs-Ks(s+2)R(s)C(s)-τs-Ks(s+2)R(s)C(s)解:G(s)=s2+2s+KsτKG(s)=s2+2s+KsτK=s(s+1)τ2+K1τ2+KK=s(s+1)τ2+K1τ2+KKΦ(s)=s2+(2+K)s+KτKΦ(s)=s2+(2+K)s+KτK2ωnζ=2+Kτ2ωnζ=2+Kτ2=Kωn2=Kωn=2*0.7K=2*0.7KKess=2+KτKess=2+KτK=0.25=0.25K-2τK=0.25K-2τKK=31.6τ=0.1863-19已知系统的结构图如图所示。其中r(t)=1(t),d1(t)=1(t),d2(t)=1(t)。试求:(1)在r(t)作用下系统的稳态误差;(2)在d1(t)和d2(t)同时作用下系统的稳态误差;(3)在d1(t)作用下,且G(s)=KP+sK和F(s)=Js1时,系统的稳态误差。+R(s)G(s)F(s)C(s)+-D1(s)D2(s)E(s)+R(s)G(s)G(s)F(s)F(s)C(s)+-D1(s)D2(s)E(s)解:essd=lims-F(s)1+G(s)F(s)s→0-11+G(s)F(s)+s1[]essd=lims-F(s)1+G(s)F(s)s→0-11+G(s)F(s)+s1[]Ed(s)=-G2(s)H(s)1+G1(s)G2(s)H(s)·D(s)Ed(s)=-G2(s)H(s)1+G1(s)G2(s)H(s)·D(s)=1+G(0)F(0)-[1+F(s)]=1+G(0)F(0)-[1+F(s)]G(s)=Kp+KsG(s)=Kp+KsJs1F(s)=Js1F(s)=essd=lims-F(s)1+G(s)F(s)s→0s1essd=lims-F(s)1+G(s)F(s)s→0s1-s→0s1=lims1+(Kp
本文标题:自动控制原理第三章课后答案
链接地址:https://www.777doc.com/doc-2117153 .html