您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 第七章机械的运转及速度波动调节
第七章机械的运转及其速度波动的调节本次课题(或教材章节题目):机械的运转及其速度波动的调节教学要求:掌握速度波动的原因及其相关的基本概念;了解机械系统的等效动力学模型的建立;学会飞轮的简易设计方法;重点:速度波动的原因及平均速度、速度不均匀系数的概念及机械系统的等效动力学模型的建立及其基本概念。难点:本讲理论性较强,尤其是机械系统的等效动力学模型及机构运动方程式的推演教学手段及教具:黑板上讲授,并配以多媒体的文字和方程的显示,以突出重点内容。讲授内容及时间分配:本章安排4个学时;讲授内容包括:1、概述:研究机械运转及速度波动调节的目的;机械运动过程的三个阶段;作用在机械上的驱动力、生产阻力2、机械的运动方程式:机械运动方程的一般表达式;机械系统的等效动力学模型;3、机构运动方程式的推演;4、机械运动方程式的求解;5、稳定运转状态下机械的周期性速度波动及其调节;6、机械的非周期性速度波动及其调节简介。课后作业包括以下内容:机械系统等效力、等效力矩、等效质量、等效转动惯量的计算;机械系统简单等效动力学模型的推演和求解;用于周期性速度波动调节的飞轮转动惯量计算等。阅读指南本章仅介绍了简单的单自由度机械系统的等效动力学模型的建立与求解的问题,对于多自由度系统机械系统运动微分方程式的建立及求解和考虑弹性变形时的机构动力学、考虑运动副间隙时的机构动力学和具有变质量的机构动力学及其关于微分方程的数值解法等问题,可参阅:《机械动力学》唐锡宽、金德闻编著,北京:高等教育出版社,1993《弹性连杆机构的分析与设计》张策等编著,北京:机械工业出版社,1997《机械动力学》王鸿恩主编,重庆:重庆大学出版社,1989《常微分方程的数值解法》南京大学数学系计算数学专业编,北京:科学出版社,1979另外本章只介绍了力是机构位置函数时飞轮设计的简易法,它忽略了机构中自身构件具有的那部分转动惯量,计算出的飞轮转动惯量偏大;对于采用精确法设计飞轮和当力是机构速度函数时飞轮设计等问题,可参阅:《机械工程手册》(第30篇:飞轮部分)机械工程编辑委员会编辑,北京:机械工业出版社,1979§7-1概述(1)研究机械运转及速度波动调节的目的周期性速度波动危害:①引起动压力,η↓和可靠性↓。②可能在机器中引起振动,影响寿命、强度。③影响工艺,↓产品质量。2、非周期性速度波动危害:机器因速度过高而毁坏,或被迫停车。本章主要研究两个问题:1)研究单自由度机械系统在外力作用下的真实运动规律。通过动力学模型建立力与运动参数之间的运动微分方程来研究真实运动规律。2)研究机械运转速度波动产生的原因及其调节方法。(2)机械运动过程的三个阶段机械运转过程一般经历三个阶段:起动、稳定运转和停车阶段a)起动阶段:外力对系统做正功(Wd-Wr0),系统的动能增加(E=Wd-Wr),机械的运转速度上升,并达到工作运转速度。b)稳定运转阶段:由于外力的变化,机械的运转速度产生波动,但其平均速度保持稳定。因此,系统的动能保持稳定。外力对系统做功在一个波动周期内为零(Wd-Wr=0)。c)停车阶段:通常此时驱动力为零,机械系统由正常工作速度逐渐减速,直至停止。此阶段内功能关系为Wd=0;Wr=E。(3)、作用在机械上的驱动力驱动力由原动机产生,它通常是机械运动参数(位移、速度或时间)的函数,称为原动机的机械特性,不同的原动机具有不同的机械特性。如三相异步电动机的驱动力便是其转动速度的函数,如图所示。B点:Mmax(最大的驱动力矩)、ωmin(最小的角速度);N点:Mn为电动机的额定转矩,ωn为电动机的额定角速度;C点:所对应的角速度ω0为电动机的同步角速度,这时的电动机的转矩为零。BC段:外载荷Mˊ↑,ω↓,电机驱动力矩将增加Mdˊ↑,使Mdˊ=Mˊ,机器重新达到稳定运转;AB段:外载荷Mˊ↑,ω↓,但电机驱动力矩却下降Mdˊ↓,使MdˊMˊ,直至停车;电机机械特性曲线的稳定运转阶段可以用一条通过N点和C点的直线近似代替。Md=Mn(ω0-ω)/(ω0-ωn)式中Mn、ωn、ω0可由电动机产品目录中查出。(4)、生产阻力生产阻力与运动参数的关系决定于机械的不同工艺过程,如:车床:生产阻力近似为常数;鼓风机、离心机:生产阻力为速度的函数;压力机:生产阻力是位移的函数。§7-2机械的运动方程式一.机械运动方程的一般表达式微分方程式:动能增量dE=dW外力元功下面以图示的曲柄滑块机构为例说明单自由度机械系统的运动方程式的建立方法。设已知曲柄1为原动件,其角速度为ω1。曲柄1的质心S1在O点,其转动惯量为J1;连杆2的角速度为ω2,质量为m2,其对质心S2的转动惯量为JS2,质心S2的速度为vs2;滑块3的质量为m3,其质心S3在B点,速度为v3。则该机构在dt瞬时的动能增量为:dE=d(J1ω21/2+m2v2S2/2+JS2ω22/2+m3v23/2)机构上作用有驱动力矩M1与工作阻力F3,,在dt瞬间其所做得功为:dW=(M1ω1–F3v3)dt=Pdt可得:d(J1ω21/2+m2v2S2/2+JS2ω22/2+m3v23/2)=(M1ω1–F3v3)dt同理,如果机械系统由n各活动构件组成,作用在构件i上的作用力为Fi,力矩为Mi,力Fi的作用点的速度为vi,构件的角速度为ωi,则可得出机械运动方程式的一般表达式为:式中αi为作用在构件i上的外力Fi与该力作用点的速度vi间的夹角,而“±”号的选取决定于作用在构件i上的力矩Mi与该构件的角速度为ωi的方向是否相同,相同时取“+”号,反之取“-”号。二.机械系统的等效动力学模型1.最简单的单自由度系统d(Jω2/2)=(Mω)dt或d(Jω2/2)=Mdφd(mv2/2)=(Fv)dt或d(mv2/2)=Fds2.将复杂的单自由度系统等效成为最简单的单自由度系统1)取绕质心轴转动的构件为等效构件曲柄滑块机构的机械运动方程式:令:Me=M1-F3(v3/ω1)上式中:Je具有转动惯量的量纲,故称为等效转动惯量;Me具有力矩的量纲,称为等效力矩。曲柄滑块机构的运动方程式可简洁地表示为:d[Jeω21/2]=Meω1dt或d[Jeω21/2]=Medφ2)取移动构件为等效构件曲柄滑块机构的机械运动方程式:令:me为等效质量,Fe为等效力:Fe=M1(ω1/v3)-F3故以滑块3为等效构件所建立的运动方程式为:d[mev23/2]=Fev3dt或d[mev23/2]=Feds3)结论(1)对于一个复杂的单自由度机械系统,可以将其等效为一个简单的定轴转动构件或水平移动构件进行研究。这种等效是带有瞬时性的。(2)等效转动惯量Je,等效力矩Me的一般表达式为:(3)等效质量me,等效力Fe一般表达式为:(4)关于等效转动惯量Je和等效质量mea)等效转动惯量(质量)是等效构件位置的函数,且恒为正值:Je=Je(φe);me=me(se);b)在不知道机构真实运动规律的条件下,可以求出等效转动惯量Je和等效质量me;c)等效转动惯量Je和等效质量me均为假想量,并非机构的总转动惯量和质量;(5)关于等效力Fe和等效力矩Mea)等效力矩(力)在最一般的情况下是等效构件的位置、速度或时间的函数:Me=Me(φe,ωe,t),Fe=Fe(se,ve,t);b)在不知道机构真实运动规律的条件下,可以求出等效力Fe和等效力矩Me;c)等效力Fe和等效力矩Me均为假想量,并非机构真实外力、力矩的合力、合力矩;d)等效力Fe和等效力矩Me与机构动态静力分析方法中求出的平衡力及平衡力矩的大小相等方向相反(它们可以用速度多边形杠杆法求解)三.机构运动方程式的推演-----研究机构在外力作用下的真实运动规律以上三种方程形式在解决不同的问题时,具有不同的作用,可以灵活运用。*§7-3机械运动方程式的求解一.等效力矩和等效转动惯量为等效构件位置函数时1)采用能量积分形式的方程式(来求解对应φ角度时机构的ω、t、ε):可得到ω=ω(φ)的表达式。2)求解运动时间t:∵ω=dφ/dt3)求解角加速度ε:∵ε=dω/dt=dω/dφ·dφ/dt=ω·dω/dφ二.等效转动惯量为常数,等效力矩是等效构件速度的函数时采用力矩形式的方程式(来求解对应t时间机构的ω、ε、φ),有:进而得到:三.等效转动惯量是机构位置得函数,等效力矩是是机构位置和速度的函数时在机床中,由于含有连杆机构,故等效转动惯量J=J(φ);用电机驱动,等效力矩M=M(φ,ω)。采用基本形式的微分方程式:该方程式为非线形微分方程,一般无解析解,通常用数值法求解。将上式改写为:设已知:J(φ);M(φ,ω),求机构在φ0-φ,某一周期内的变化规律。数值法的核心是将区间分成许多微段,用差分来替代微分;dφ=Δφi=φi+1-φi;dJ=ΔJi=Ji+1-Ji;dω=Δωi=ωi+1-ωi;ωi2(Ji+1-Ji)/2+Jiωi(ωi+1-ωi)=M(φi,ωi)(φi+1-φi)ωi+1=M(φi,ωi)Δφi/(Jiωi)+ωi(3Ji-Ji+1)/2Ji讨论:1)该方法具有通用意义,使用计算机求解,方便快速;2)Δφ的区间大小直接影响解的精度;同时也将影响求解速度;3)该法为叠代法:ωi→ωi+1;ω0的确定可参考类似机械和有关资料选定;一个运动循环结束时,应该使:ω0=ωn;如果误差较大,ωn可将作为ω0重新叠代→→ω0-ωn许用误差。§7-4稳定运转状态下机械的周期性速度波动及其调节1、周期性速度波动的原因如图所示为某一机械在稳定运转过程中,其等效构件在一个周期фT中所受等效驱动力矩Md与等效阻力矩Mr的变化曲线。在等效构件回转过ф角时,其驱动功与阻抗功分别为:机械动能的增量为由上式计算得到机械动能E(ф)的变化曲线,如图。在ab区间Md(φ)Mr(φ),系统出现了盈功,等效构件的角速度上升;在bc区间,Md(φ)Mr(φ),系统出现了亏功,等效构件的角速度下降。在等效力矩和等效转动惯量变化的公共周期内,驱动力所做的功等于阻抗力所做得功,则机械动能的增量等于零。于是经过等效力矩与等效转动惯量变化的一个公共周期,机械的动能又恢复到原来的数值,故等效构件的角速度也将恢复到原来的数值。由此可知,等效构件的角速度在稳定运转过程中将呈现周期性的波动。2、周期性速度波动的调节1)、平均角速度和速度不均匀系数平均角速度ωm是指一个运动周期内,角速度的平均值,即在工程上,我们常用下式计算:机械速度波动的程度可用速度不均匀系数δ来表示:由上两式可得一关系式:2δωm=ω2max-ω2min不同类型的机械,对速度不均匀δ系数大小的要求是不同的。书中表7-2列出了一些常用机械速度不均匀系数的许用值[δ]。2)、调速飞轮的简易设计方法(1)飞轮调节周期性速度波动的基本原理飞轮是一个具有很大转动惯量的构件,转速稍有变化就可以吸收或放出很大的能量。飞轮的调速作用既是利用了其储能的原理。对于尖峰载荷很大的机械(如:锻压、冲床、玩具车、单杠内燃机、破碎机等),安装了飞轮可以使原动机的功率比原来小些。(2)飞轮转动惯量JF的确定设忽略机械中转动惯量的变化部分,仅保留常数部分并将其等效到飞轮轴上Je,飞轮轴的总转动惯量J应为J=Je+JF。在一个周期内,机械系统的最大盈亏功:ΔWmax=Emax-Emin=(Jω2max)/2-(Jω2min)/2=J(ω2max-ω2min)/2=Jω2mδ所以:δ=ΔWmax/(ω2mJ)即:JF=ΔWmax/(ω2m[δ])-Je若将ωm用r/min带入:JF=900ΔWmax/(π2n2[δ])-Je讨论:a)JF取值很大可使δ很小,一般情况只需满足δ≦[δ]即可,机械的速度不可能达到绝对均匀,那样将需要无穷大转动惯量的飞轮。b)使用飞轮调速仅适用于周期性速度波动。c)飞轮安装在较高速的轴上可以使其尺寸、重量有所减小。设飞轮装在某一构件x上:FxJ与JF的关系:2)(222xFxFWJWJ∴2)(xFFxWWJJFxxJW∴飞装在速度高的轴上。FxJ为常数必须xWW常数,∴装在与主轴有定传
本文标题:第七章机械的运转及速度波动调节
链接地址:https://www.777doc.com/doc-2118567 .html