您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 综合/其它 > 线性规划在工商管理中的应用
线性规划在工商管理中的应用2019/12/192线性规划在工商管理中的应用•人力资源分配的问题•生产计划的问题•套裁下料问题•配料问题•投资问题2019/12/193§1人力资源分配的问题例1.某昼夜服务的公交线路每天各时间段内所需司机和乘务人员数如下:设司机和乘务人员分别在各时间段一开始时上班,并连续工作八小时,问该公交线路怎样安排司机和乘务人员,既能满足工作需要,又配备最少司机和乘务人员?班次时间所需人数16:00——10:0060210:00——14:0070314:00——18:0060418:00——22:0050522:00——2:002062:00——6:00302019/12/194解:设xi表示第i班次时开始上班的司机和乘务人员数Minx1+x2+x3+x4+x5+x6s.t.x1+x6≥60x1+x2≥70x2+x3≥60x3+x4≥50x4+x5≥20x5+x6≥30x1,x2,x3,x4,x5,x6≥0§1人力资源分配的问题2019/12/195例2.一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少?时间所需售货员人数星期日28星期一15星期二24星期三25星期四19星期五31星期六28§1人力资源分配的问题2019/12/196解:设xi(i=1,2,…,7)表示星期一至日开始休息的人数Minx1+x2+x3+x4+x5+x6+x7s.t.x1+x2+x3+x4+x5≥28x2+x3+x4+x5+x6≥15x3+x4+x5+x6+x7≥24x4+x5+x6+x7+x1≥25x5+x6+x7+x1+x2≥19x6+x7+x1+x2+x3≥31x7+x1+x2+x3+x4≥28x1,x2,x3,x4,x5,x6,x7≥0§1人力资源分配的问题2019/12/197§2生产计划的问题例3.某公司面临一个是外包协作还是自行生产的问题。该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三道工序。甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。数据如下表。问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?甲乙丙资源限制铸造工时(小时/件)51078000机加工工时(小时/件)64812000装配工时(小时/件)32210000自产铸件成本(元/件)354外协铸件成本(元/件)56--机加工成本(元/件)213装配成本(元/件)322产品售价(元/件)2318162019/12/198解:设x1,x2,x3分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,x4,x5分别为由外协铸造再由本公司加工和装配的甲、乙两种产品的件数。求xi的利润:利润=售价-各成本之和产品甲全部自制的利润=23-(3+2+3)=15元产品甲铸造外协,其余自制的利润=23-(5+2+3)=13元产品乙全部自制的利润=18-(5+1+2)=10元产品乙铸造外协,其余自制的利润=18-(6+1+2)=9元产品丙的利润=16-(4+3+2)=7元可得到xi(i=1,2,3,4,5)的利润分别为15元、10元、7元、13元、9元。§2生产计划的问题2019/12/199通过以上分析,可建立如下的数学模型:目标函数:Max15x1+10x2+7x3+13x4+9x5约束条件:5x1+10x2+7x3≤80006x1+4x2+8x3+6x4+4x5≤120003x1+2x2+2x3+3x4+2x5≤10000x1,x2,x3,x4,x5≥0§2生产计划的问题2019/12/1910例4.永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B工序。Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工。数据如表。问:为使该厂获得最大利润,应如何制定产品加工方案?产品单件工时设备ⅠⅡⅢ设备的有效台时满负荷时的设备费用A15106000300A2791210000321B1684000250B24117000783B374000200原料(元/件)0.250.350.50售价(元/件)1.252.002.80§2生产计划的问题2019/12/1911解:设xijk表示第i种产品,在第j种工序上的第k种设备上加工的数量。建立如下的数学模型:s.t.5x111+10x211≤6000(设备A1)7x112+9x212+12x312≤10000(设备A2)6x121+8x221≤4000(设备B1)4x122+11x322≤7000(设备B2)7x123≤4000(设备B3)x111+x112-x121-x122-x123=0(Ⅰ产品在A、B工序加工的数量相等)x211+x212-x221=0(Ⅱ产品在A、B工序加工的数量相等)x312-x322=0(Ⅲ产品在A、B工序加工的数量相等)xijk≥0,i=1,2,3;j=1,2;k=1,2,3§2生产计划的问题2019/12/1912目标函数为计算利润最大化,利润的计算公式为:利润=[(销售单价-原料单价)*产品件数]之和-(每台时的设备费用*设备实际使用的总台时数)之和。这样得到目标函数:Max(1.25-0.25)(x111+x112)+(2-0.35)(x211+x212)+(2.80-0.5)x312–300/6000(5x111+10x211)-321/10000(7x112+9x212+12x312)-250/4000(6x121+8x221)-783/7000(4x122+11x322)-200/4000(7x123).经整理可得:Max0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x121-0.5x221-0.4474x122-1.2304x322-0.35x123§2生产计划的问题2019/12/1913§3套裁下料问题例5.某工厂要做100套钢架,每套用长为2.9m,2.1m,1.5m的圆钢各一根。已知原料每根长7.4m,问:应如何下料,可使所用原料最省?解:共可设计下列8种下料方案,见下表设x1,x2,x3,x4,x5,x6,x7,x8分别为上面8种方案下料的原材料根数。这样我们建立如下的数学模型。目标函数:Minx1+x2+x3+x4+x5+x6+x7+x8约束条件:s.t.x1+2x2+x4+x6≥1002x3+2x4+x5+x6+3x7≥1003x1+x2+2x3+3x4+x6+4x8≥100x1,x2,x3,x4,x5,x6,x7,x8≥0ⅠⅡⅢⅣⅤⅥⅦⅧ2.9120101002.1002211301.531203104合计/m7.47.37.27.16.66.56.36料头/m00.10.20.30.80.91.11.42019/12/1914§4配料问题例6.某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,数据如右表。问:该厂应如何安排生产,使利润收入为最大?产品名称规格要求单价(元/kg)甲原材料1不少于50%,原材料2不超过25%50乙原材料1不少于25%,原材料2不超过50%35丙不限25原材料名称每天最多供应量单价(元/kg)11006521002536035解:设xij表示第i种(甲、乙、丙)产品中原料j的含量。这样我们建立数学模型时,要考虑:对于甲:x11,x12,x13;对于乙:x21,x22,x23;对于丙:x31,x32,x33;对于原料1:x11,x21,x31;对于原料2:x12,x22,x32;对于原料3:x13,x23,x33;目标函数:利润最大,利润=收入-原料支出约束条件:规格要求4个;供应量限制3个。2019/12/1915•利润=总收入-总成本=甲乙丙三种产品的销售单价*产品数量-甲乙丙使用的原料单价*原料数量,故有目标函数Max50(x11+x12+x13)+35(x21+x22+x23)+25(x31+x32+x33)-65(x11+x21+x31)-25(x12+x22+x32)-35(x13+x23+x33)=-15x11+25x12+15x13-30x21+10x22-40x31-10x33约束条件:从第1个表中有:x11≥0.5(x11+x12+x13)x12≤0.25(x11+x12+x13)x21≥0.25(x21+x22+x23)x22≤0.5(x21+x22+x23)§4配料问题2019/12/1916§4配料问题从第2个表中,生产甲乙丙的原材料不能超过原材料的供应限额,故有x11+x21+x31≤100x12+x22+x32≤100x13+x23+x33≤60通过整理,得到以下模型:2019/12/1917例6.(续)目标函数:Maxz=-15x11+25x12+15x13-30x21+10x22-40x31-10x33约束条件:s.t.0.5x11-0.5x12-0.5x13≥0(原材料1不少于50%)-0.25x11+0.75x12-0.25x13≤0(原材料2不超过25%)0.75x21-0.25x22-0.25x23≥0(原材料1不少于25%)-0.5x21+0.5x22-0.5x23≤0(原材料2不超过50%)x11+x21+x31≤100(供应量限制)x12+x22+x32≤100(供应量限制)x13+x23+x33≤60(供应量限制)xij≥0,(i=1,2,3;j=1,2,3)§4配料问题2019/12/1918标准汽油辛烷数蒸汽压力(g/cm2)库存量(L)1107.57.11×10-2380000293.011.38×10-2265200387.05.69×10-24081004108.028.45×10-2130100例7.汽油混合问题。一种汽油的特性可用两种指标描述,用“辛烷数”来定量描述其点火特性,用“蒸汽压力”来定量描述其挥发性。某炼油厂有1、2、3、4的4种标准汽油,其特性和库存量列于表4-8中,将这四种标准汽油混合,可得到标号为1,2的2种飞机汽油,这两种汽油的性能指标及产量需求列于表4-9中。问应如何根据库存情况适量混合各种标准汽油,既满足飞机汽油的性能指标,又使2号汽油满足需求,并使得1号汽油产量最高?飞机汽油辛烷数蒸汽压力(g/cm2)产量需求1不小于91不大于9.96×10-2越多越好2不小于100不大于9.96×10-2不少于250000表4---8表4---9§4配料问题2019/12/191911121314xxxx解:设xij为飞机汽油i中所用标准汽油j的数量(L)。目标函数为飞机汽油1的总产量:库存量约束为:1121122213231424380000265200408100130100xxxxxxxx产量约束为飞机汽油2的产量:21222324250000xxxx由物理中的分压定律,可得有关蒸汽压力的约束条件:1njjjPVpv11121314212223242.851.424.2718.4902.851.424.2718.490xxxxxxxx同样可得有关辛烷数的约束条件为:111213142122232416.52.04.017.007.57.013.08.00xxxxxxxx§4配料问题2019/12/1920综上所述,得该问题的数学模型为:111213142122232411211222132314241112131421222324111213142122max2500003800002652004081001301002.851.424.2718.4902
本文标题:线性规划在工商管理中的应用
链接地址:https://www.777doc.com/doc-2134239 .html