您好,欢迎访问三七文档
1.什么是网络的泛化能力?一个神经网路是否优良,与传统最小二乘之类的拟合评价不同(主要依据残差,拟合优度等),不是体现在其对已有的数据拟合能力上,而是对后来的预测能力,既泛化能力。网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律。2.过拟合是什么,怎么处理?神经网络计算不能一味地追求训练误差最小,这样很容易出现“过拟合”现象,只要能够实时检测误差率的变化就可以确定最佳的训练次数,比如15000次左右的学习次数,如果你不观察,设成500000次学习,不仅需要很长时间来跑,而且最后结果肯定令人大失所望。避免过拟合的一种方法是:在数据输入中,给训练的数据分类,分为正常训练用、变量数据、测试数据,在后面节将讲到如何进行这种分类。其中变量数据,在网络训练中,起到的作用就是防止过拟合状态。3.学习速率有什么作用?学习速率这个参数可以控制能量函数的步幅,并且如果设为自动调整的话,可以在误差率经过快速下降后,将学习速率变慢,从而增加BPNN的稳定性。4.神经网络的权值和阈值分别是个什么概念?权值和阀值很重要,关系到网络最后的结果。权值和阈值是神经元之间的连接,将数据输入计算出一个输出,然后与实际输出比较,误差反传,不断调整权值和阈值。5.用BP逼近非线性函数,如何提高训练精度(1)调整网络结构增加网络的层数可以进一步降低误差,提高精度但会使网络复杂化,从而增加网络的训练时间。精度的提高实际上也可以通过增加隐层神经元的数目来获得,其效果更容易观察和掌握,所以应优先考虑。(2)初始值选取为了使误差尽可能小,需要合理选择初始权重和偏置,如果太大就容易陷入饱和区,导致停顿。一般应选为均匀分布的小数,介于(-1,1)。(3)学习速率调整学习速率的选取很重要,大了可能导致系统不稳定,小了会导致训练周期过长、收敛慢,达不到要求的误差。一般倾向于选取较小的学习速率以保持系统稳定,通过观察误差下降曲线来判断。下降较快说明学习率比较合适,若有较大振荡则说明学习率偏大。同时,由于网络规模大小的不同,学习率选择应当针对其进行调整。采用变学习速率的方案,令学习速率随学习进展而逐步减少,可收到良好的效果。(4)期望误差期望误差当然希望越小越好,但是也要有合适值。BP神经网络matlab实现的基本步骤1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。关于网络具体建立使用方法,在后几节的例子中将会说到。4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。归一化是为了加快训练网络的收敛性,具体做法是:1把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。2把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z=R+jωL=R(1+jωL/R),复数部分变成了纯数量了,没有量纲。另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。
本文标题:神经网络各属性讲解
链接地址:https://www.777doc.com/doc-2148073 .html