您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 程控交换与光纤通信第1章
光纤通信西安电子科技大学刘增基主讲人:李秋菊主要内容第1章绪论第2章光纤和光缆第3章通信用光器材第4章光端机第5章数字光纤通信系统1·1光纤通信发展的历史和现状1·2光纤通信的优点和应用1·3光纤通信系统的基本组成第1章概论返回主目录第1章概论1.1光纤通信发展的历史和现状1.1.1探索时期的光通信中国古代用“烽火台”报警。1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。缺点:没有理想的光源和传输介质。1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器,给光通信带来了新的希望。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。在这个时期,美国麻省理工学院利用He-Ne激光器和CO2激光器进行了大气激光通信试验。实验证明:用承载信息的光波,通过大气的传播,实现点对点的通信是可行的,但是通信能力和质量受气候影响十分严重。由于雨、雾、雪和大气灰尘的吸收和散射,光波能量衰减很大。另一方面,大气的密度和温度不均匀,造成折射率的变化,使光束位置发生偏移。因而通信的距离和稳定性都受到极大的限制,不能实现“全天候”通信。大气激光通信的稳定性和可靠性仍然没有解决。透镜波导和反射镜波导的光波传输系统。透镜波导是在金属管内每隔一定距离安装一个透镜,每个透镜把经传输的光束会聚到下一个透镜而实现的。反射镜波导和透镜波导相似,是用与光束传输方向成45°角的二个平行反射镜代替透镜而构成的。由于没有找到稳定可靠和低损耗的传输介质,对光通信的研究曾一度走入了低潮。1.1.2现代光纤通信1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(OpticalFiber)进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。当时石英纤维的损耗高达1000dB/km以上,高锟等人指出:这样大的损耗不是石英纤维本身固有的特性,而是由于材料中的杂质,例如过渡金属(Fe、Cu等)离子的吸收产生的。材料本身固有的损耗基本上由瑞利(Rayleigh)散射决定,它随波长的四次方而下降,其损耗很小因此有可能通过原材料的提纯制造出适合于长距离通信使用的低损耗光纤。•1970年,光纤研制取得了重大突破。在当年,美国康宁(Corning)公司就研制成功损耗20dB/km的石英光纤。它的意义在于:使光纤通信可以和同轴电缆通信竞争,把光纤通信的研究开发推向一个新阶段。•1972年,康宁公司高纯石英多模光纤损耗降低到4dB/km。•1973年,美国贝尔(Bell)实验室取得了更大成绩,光纤损耗降低到2.5dB/km。•1974年降低到1.1dB/km。•1976年,日本电报电话(NTT)公司等单位将光纤损耗降低到0.47dB/km(波长1.2μm)。•在以后的10年中,波长为1.55μm的光纤损耗:1979年是0.20dB/km,1984年是0.157dB/km,1986年是0.154dB/km,接近了光纤最低损耗的理论极限。•1970年,作为光纤通信用的光源也取得了实质性的进展。•当年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后突破了半导体激光器在低温(-200℃)或脉冲激励条件下工作的限制,研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。•1973年,半导体激光器寿命达到7000小时。•1977年,贝尔实验室研制的半导体激光器寿命达到10万小时(约11.4年),外推寿命达到100万小时,完全满足实用化的要求。•在这个期间,1976年日本电报电话公司研制成功发射波长为1.3μm的铟镓砷磷(InGaAsP)激光器.•1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55μm的连续振荡半导体激光器。•由于光纤和半导体激光器的技术进步,使1970年成为光纤通信发展的一个重要里程碑。•1976年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验,系统采用GaAlAs激光器作光源,多模光纤作传输介质,速率为44.7Mb/s,传输距离约10km。•1980年,美国标准化FT-3光纤通信系统投入商业应用,系统采用渐变型多模光纤,速率为44.7Mb/s。•随后美国很快敷设了东西干线和南北干线,穿越22个州光缆总长达5×104km。•1983年敷设了纵贯日本南北的光缆长途干线,全长3400km,初期传输速率为400Mb/s,后来扩容到1.6Gb/s。•随后,由美、日、英、法发起的第一条横跨大西洋海底光缆通信系统于1988年建成;第一条横跨太平洋海底光缆通信系统于1989年建成。•从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。光纤通信的发展可以粗略地分为三个阶段:•第一阶段(1966~1976年),这是从基础研究到商业应用的开发时期。在这个时期,实现了短波长(0.85μm)低速率(45或34Mb/s)多模光纤通信系统,无中继传输距离约10km。•第二阶段(1976~1986年),光纤从多模发展到单模,工作波长从短波长(0.85μm)发展到长波长(1.31μm和1.55μm),实现了工作波长为1.31μm、传输速率为140~565Mb/s的单模光纤通信系统,无中继传输距离为100~50km。•第三阶段(1986~1996年),这是以超大容量超长距离为目标、全面深入开展新技术研究的时期。•在这个时期,实现了1.55μm色散移位单模光纤通信系统。采用外调制技术,传输速率可达2.5~10Gb/s,无中继传输距离可达150~100km。实验室可以达到更高水平。1.1.3国内外光纤通信发展的现状•光纤从多模发展到单模,工作波长从0.85μm发展到1.31μm和1.55μm,传输速率从几十Mb/s发展到几十Gb/s。随着技术的进步和大规模产业的形成,光纤价格不断下降•应用范围不断扩大:从初期的市话局间中继到长途干线进一步延伸到用户接入网,从数字电话到有线电视(CATV),从单一类型信息的传输到多种业务的传输。•目前光纤已成为信息宽带传输的主要媒质,光纤通信系统将成为未来国家信息基础设施的支柱。•1998年我国国内公共电信网形成了连接全国各省市区的“八横八纵”光缆骨干传输网,标志着传输网的技术和规模进入世界先进行列。•2006年,我国研制成功每波长40Gb/s,80个波长的WDM长途光纤传输系统。1.2光纤通信的优点和应用1.2.1光通信与电通信任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。通信系统的传输容量取决于对载波调制的频带宽度。•光波和电波频率差别:光纤通信用的近红外光(波长约1μm)的频率(约300THz)比微波(波长为0.1m~1mm)的频率(3~300GHz)高3个数量级以上。•光纤通信用的近红外光(波长为0.7~1.7μm)频带宽度约为200THz,在常用的1.31μm和1.55μm两个波长窗口频带宽度也在20THz以上。•微波波段有线传输线路是由金属导体制成的同轴电缆和波导管。•同轴电缆的损耗随信号频率的平方根而增大,要减小损耗,必须增大结构尺寸,但要保持单一模式的传输,又不允许增大结构尺寸。•波导管具有比同轴电缆更低的损耗,但随着工作频率的提高,要减小波导结构的尺寸以保持单一模式的传输,损耗仍然要增大。•光纤是由绝缘的石英(SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。图1.2各种传输线路的损耗特性10001001010.110M标准同轴38mm海底同轴光纤100M1G10G100G1T10T100T1000T频率/HzM:(注)G:T:1061091012传输损耗/(dB·km-1)51mm波导器1.2.2光纤通信的优点1.容许频带很宽,传输容量很大光纤通信系统的带宽取决于光源的调制特性、调制方式和光纤的色散特性。石英单模光纤在1.31μm波长具有零色散特性,通过光纤的设计,还可以把零色散波长移到1.55μm。在零色散波长窗口,单模光纤都具有几十GHz·km的带宽。另一方面,可以采用多种复用技术来增加传输容量。最简单的是空分复用,因为光纤很细,直径只有125μm,一根光缆可以容纳几百根光纤,12×12=144根光纤的带状光缆早已实现。表1.4光纤通信与电缆或微波通信传输能力的比较通信手段传输容量(话路)/条中继距离/km1000km内中继器个数微波无线电9605020小同轴9604250中同轴180061600光缆19203033光缆14000(1Gb/s)8411光缆6000(445MB/S)13472.损耗很小,中继距离很长且误码率很小石英光纤在1.31μm和1.55μm波长,传输损耗分别为0.50dB/km和0.20dB/km,甚至更低。因此,用光纤比用同轴电缆或波导管的中继距离长得多。传输容量大、传输误码率低、中继距离长的优点,使光纤通信系统不仅适合于长途干线网而且适合于接入网的使用,这也是降低每公里话路的系统造价的主要原因。3.重量轻、体积小光纤重量很轻,直径很小。即使做成光缆,在芯数相同的条件下,其重量还是比电缆轻得多,体积也小得多。通信设备的重量和体积对许多领域特别是军事、航空和宇宙飞船等方面的应用,具有特别重要的意义。在飞机上用光纤代替电缆,不仅降低了通信设备的成本,而且降低了飞机的制造成本。4.抗电磁干扰性能好光纤由电绝缘的石英材料制成,光纤通信线路不受各种电磁场的干扰和闪电雷击的损坏。无金属光缆非常适合于存在强电磁场干扰的高压电力线路周围和油田、煤矿等易燃易爆环境中使用。5.泄漏小,保密性能好在光纤中传输的光泄漏非常微弱,即使在弯曲地段也无法窃听。没有专用的特殊工具,光纤不能分接,因此信息在光纤中传输非常安全。6.节约金属材料,有利于资源合理使用制造同轴电缆和波导管的铜、铝、铅等金属材料,在地球上的储存量是有限的;而制造光纤的石英(SiO2)在地球上基本上是取之不尽的材料。总之,光纤通信不仅在技术上具有很大的优越性,而且在经济上具有巨大的竞争能力,因此其在信息社会中将发挥越来越重要的作用。图1.3给出各种通信系统相对造价与传输容量(话路数)的关系。图1.3各种通信系统相对造价与传输容量的比较平行双绞线电缆同轴电缆微波1021010310410510610-110-210-310-410-5系统/话路公里相对造价话路数/条光缆1.2.3光纤通信的应用光纤可以传输数字信号,也可以传输模拟信号。光纤在通信网、广播电视网与计算机网,以及在其它数据传输系统中,都得到了广泛应用。①通信网,包括全球通信网(如横跨大西洋和太平洋的海底光缆和跨越欧亚大陆的洲际光缆干线)、各国的公共电信网(如我国的国家一级干线、各省二级干线和县以下的支线)、各种专用通信网、特殊通信手段。②构成因特网的计算机局域网和广域网,如光纤以太网、路由器之间的光纤高速传输链路。③有线电视网的干线和分配网;工业电视系统,如工厂、银行、商场、交通和公安部门的监控;自动控制系统的数据传输。④综合业务光纤接入网,可实现电话、数据、视频(会议电视、可视电话等)及多媒体业务综合接入核心网,提供各种各样的社区服务。1.3光纤通信系统的基本组成光纤通信系统可以传输数字信号,也可以传输模拟信号。用户要传输的信息多种多样,一般有话音、图像、数据或多媒体信息。为叙述方便,这里仅以数字电话和模拟电视为例。图1.4示出单向传输的光纤通信系统,包括发射、接收和作为广义信道的基本光纤传输系统。图1.4光纤通信系统的基本组成(单向传输)信息源电发射机光发射机光接收机电接收机信息宿基本光纤传输系统光纤线路接收发射电信号输入光信号输出光信号输入电信号输出1.3.1发射和接收•信息源把用户信息转换为原始电信号,这种信号称为基带信号。•电发射机把基带信号转换为适合信道传输的信号,这个转换如果需要调制,则其输出信号称为已调信号。对于数字电话传输,电话机把话音转换为频率范围
本文标题:程控交换与光纤通信第1章
链接地址:https://www.777doc.com/doc-2150966 .html