您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第六章_变量之间的关系
第六章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量。(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。(3)利用具体情境来体会两者的依存关系。二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。四、图象1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象。2、图象能清楚地反映出因变量随自变量变化而变化的情况。3、用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量。4、图象上的点:(1)对于某个具体图象上的点,过该点作横轴的垂线,垂足的数据即为该点自变量的取值;(2)过该点作纵轴的垂线,垂足的数据即为该点相应因变量的值。(3)由自变量的值求对应的因变量的值时,可在横轴上找到表示自变量的值的点,过这个点作横轴的垂线与图象交于某点,再过交点作纵轴的垂线,纵轴上垂足所表示的数据即为因变量的相应值。(4)把以上作垂线的过程过来可由因变量的值求得相应的自变量的值。5、图象理解(1)理解图象上某一个点的意义,一要看横轴、纵轴分别表示哪个变量;(2)看该点所对应的横轴、纵轴的位置(数据);(3)从图象上还可以得到随着自变量的变化,因变量的变化趋势。五、速度图象1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间;2、准确读懂不同走向的线所表示的意义:(1)上升的线:从左向右呈上升状的线,其代表速度增加;(2)水平的线:与水平轴(横轴)平行的线,其代表匀速行驶或静止;(3)下降的线:从左向右呈下降状的线,其代表速度减小。六、路程图象1、弄清哪一条轴(通常是纵轴)表示路程,哪一条轴(通常是横轴)表示时间;2、准确读懂不同走向的线所表示的意义:(1)上升的线:从左向右呈上升状的线,其代表匀速远离起点(或已知定点);(2)水平的线:与水平轴(横轴)平行的线,其代表静止;(3)下降的线:从左向右呈下降状的线,其代表反向运动返回起点(或已知定点)。七、三种变量之间关系的表达方法与特点:表达方法特点表格法多个变量可以同时出现在同一张表格中关系式法准确地反映了因变量与自变量的数值关系图象法直观、形象地给出了因变量随自变量的变化趋势第六章变量之间的关系一、选择题(每小题4分,共40分)1.下表是我国从1949年到1999年的人口统计数据(精确到0.01亿)从表中获取的的信息错误的是()A.人口随时间的变化而变化,时间是自变量,人口是因变量B.1969~1979年10年间人口增长最快C.若按1949~1999这50年的增长平均值预测,我国2009年人口总数为14亿D.从1949~1999这50年人口增长的速度逐渐加大2.某烤鸡店在确定烤鸡的烤制时间时,主要依据的是下面表格的数据:鸡的质量(千克)0.511.522.533.54烤制时间(分)406080100120140160180设鸡的质量为x千克,烤制时间为t分,则当x=3.2千克时,t=()A.140B.138C.148D.1603.报载:我省人均耕地已从1951年的2.93亩减少到1999年的1.02亩.平均每年约减少0.04亩,若不采取措施,继续按此速度减下去,若干年后我省将无地可耕.无地可耕的情况最早会发生在()年A.2022B.2023C.2024D.20254.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x的值无关;④用关系式表示的,不能用图像表示;⑤y与x的关系还可以用列表和图像法表示,其中说法正确的是()A.①②③B.①②④C.①②⑤D.①④⑤5.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y(元)与圆珠笔的支数x之间的关系可表示为()A.y=32xB..y=23xC.y=12xD.y=18x6.甲、乙二人在一次赛跑中,路程s(米)与时间t(分)的关系如图所示,从图中可以看出,下列结论错误的是()A.这是一次100米赛跑B.甲比乙先到达终点C.乙跑完全程需12.5秒D.甲的速度为8米/秒7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…….用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()时间(年)194919591969197919891999人口(亿)5.426.728.079.7511.0712.591001212.5t/秒s/米甲乙stS1S2AstBS1S2stS1S2CstS2S1D8.如图,某产品的生产流水线每小时可生产100件产品.生产前没有产品积压.生产3小时后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(t)的函数,那么,这个函数的大致图象只能是().9.星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了.B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了.C.从家里出发,一直散步(没有停留),然后回家了D.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回.10.一辆汽车以平均速度60千米/时的速度在公路上行驶,则它所走的路程s(千米)与所用的时间t(时)的关系表达式为()A.ts60B.ts60C.60tsD.ts60二.填空题:(每小题5分,共30分)11..A、B两地相距500千米,一辆汽车以50千米/时的速度由A地驶向B地.汽车距B地的距离y(千米)与行驶时间t(之间)的关系式为.在这个变化过程中,自变量是,因变量是.12某人用新充值的50元IC卡打长途电话,按通话时间3分钟内收2.4元,超过1分钟加收一元钱的方式缴纳话费.若通话时间为t分钟(t大于等于3分钟),那么电话费用w可以表示为;当通话时间达到10分钟时,卡中所剩话费从50元减少到元.13.下表是春汛期间某条河流在一天中涨水情况记录表格:时间/时04812162024超警戒水位/米+0.2+0.25+0.35+0.5+0.7+0.9+1.0⑴时间从0时变化到24时,超警戒水位从上升到;⑵借助表格可知,时间从到水位上升最快.14.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,过了一段时间后,汽车到达下一个车站,乘客上、下车后汽车开始加速一段时间后又开始匀速行驶,试将这一过程中汽车的速度与时间的关系在右边用一幅图近似地刻画出来15.1~6个月的婴儿生长发育得非常快,他们的体重y(克)和月龄x(月)间的关系可以用y=a+700x,其ytytytytOOOOAOBCD··············24681012141618100300400500200S(米)t(分)速度时间中a是婴儿出生时体重.一个婴儿出生时的体重4000克,请用表格表示,在1~6个月内,这个婴儿的体重y与x之间的关系:月龄/月123456体重/月16.某机动车辆出发前油箱中有油42升,行驶若干小时后,在途中加油站加油若干.油箱中余油量Q(升)与行驶时间t(时)之间的关系如图,请根据图像填空:⑴机动车辆行驶了小时后加油.⑻中途加油升.⑵加油后油箱中的油最多可行驶小时.⑶如果加油站距目的地还有230公里,机动车每小时走40公里,油箱中的油能否使机动车到达目的地?答:.三、解答题(共50分)17.(8分)将下列各情境的序号写在相符合的图象下面.⑴足球守门员大脚开出去的球(高度与时间的关系)⑵一杯越晾越凉的水(速度与时间的关系)⑶一面冉冉上升的旗子(速度与时间的关系)⑷匀速行驶的汽车(速度与时间的关系)ABCD18.一年中,每天日照(从日出到日落)的时间是不同的,下图表示了某地区从1998年1月1日到1998年12月26日的日照时间.⑴右图描述是哪两个变量之间的关系?其中自变量是什么?因变量是什么?⑵哪天的日照时间最短?这一天的日照时间约是多少?⑶哪天的日照时间最长?这一天的日照时间约是多少?⑷大约在什么时间段内,日照时间在增加?在什么时间段内,日照时间在减少?⑸说一说该地一年中日照时间是怎样随时间而变化的.(12分)日照时间/时306090120015018021024027030033036091011121314151617一年之中第几天··············123456789618243012Q/升t/时··1011··3642OOOO19.(9分)图为一位旅行者在早晨8时从城市出发到郊外所走的路程与时间的变化图.根据图回答问题:⑴9时,10时30分,12时所走的路程分别是多少?⑵他休息了多长时间?⑶他从休息后直至到达目的地这段时间的平均速度是多少?20.(9分)在弹簧限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:所挂物体的质量/千克012345678弹簧的长度/cm1212.51313.51414.51515.516⑴弹簧不挂物体时的长度是多少?⑵如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?写出y与x的关系式.⑶如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?21.(12分)南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:南湖面积(单位:米2)淤泥平均厚度(单位:米)每天清淤泥量(单位:米3)160万0.70.6万根据上表解答下列问题:⑴请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?⑵设清除淤泥x天后,剩余的淤泥量为y(万米3),求y与x的关系式.⑶为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥.若需保留的淤泥量约为22万米3,求清除淤泥所需天数.
本文标题:第六章_变量之间的关系
链接地址:https://www.777doc.com/doc-2157934 .html