您好,欢迎访问三七文档
摘要天线是一种用来发射或接收无线电波,更广泛来讲属于电磁波的电子器件。天线应用于广播和电视、点对点无线电通信、雷达和太空探索等系统。天线通常在空气和外层空间中工作,也可以在水下运行,甚至在某些频率下工作于土壤和岩石之中。从物理学上讲,天线是一个或多个导体的组合,由它可因施加的交变电压和相关联交变电流而产生辐射的电磁场,或者可以将它放置在电磁场中,由于场的感应而在天线内部产生交变电流并在其终端产生交变电压。现在天线已随处可见,它已与我们的日常生活密切相关。技术发展也越来越趋于多样化并且较为成熟。本文主要是对天线的一些知识进行汇总总结。关键字:电磁波传播天线目录1天线基础知识介绍..................................................11.1天线定义....................................................11.2应用方向....................................................11.3工作原理....................................................11.4分类........................................................11.5天线的相关参量..............................................21.5.1天线增益...............................................21.5.2方向图.................................................31.5.3极化...................................................41.5.4输入阻抗...............................................42天线阵与面向天线基本理论..........................................52.1天线阵......................................................52.2面向天线基本理论............................................53天线未来发展趋势分析..............................................63.1趋势分析....................................................63.2关键技术分析................................................73.2.1小型化天线技术.........................................73.2.2多制式天线技术.........................................7总结................................................................8参考文献............................................................911天线基础知识介绍1.1天线定义天线(antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。1.2应用方向无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。1.3工作原理当导体上通以高频电流时,在其周围空间会产生电场与磁场。按电磁场在空间的分布特性,可分为近区,中间区,远区。设R为空间一点距导体的距离,在时的区域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。在的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。必须指出,当导线的长度L远小于波长λ时,辐射很微弱;导线的长度L增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。发射天线正是利用辐射场的这种性质,使传送的信号经过发射天线后能够充分地向空间辐射。1.4分类1、按工作性质可分为发射天线和接收天线。2、按用途可分为通信天线、广播天线、电视天线、雷达天线等。3、按方向性可分为全向天线和定向天线等。4、按工作波长可分为超长波天线、长波天线、中波天线、短波天线、超短波天线、微波天线等。5、按结构形式和工作原理可分为线天线和面天线等。描述天线的特性参量有方向图、方向性系数、增益、输入阻抗、辐射效率、极化和频宽。6、按维数来分可以分成两种类型:一维天线和二维天线27、天线根据使用场合的不同可以分为:手持台天线、车载天线、基地天线三大类。图一(天线种类)1.5天线的相关参量1.5.1天线增益增益是天线系统的最重要参数之一,天线增益的定义与全向天线或半波振子天线有关。全向辐射器是假设在所有方向上都辐射等功率的辐射器,在某一方向的天线增益是该方向上的场强。定向辐射器在该方向产生辐射强度之比,见图二图二(增益比较)注:dBi表示天线增益是方向天线相对于全向辐射器的参考值,dBd是相对于半波振子天线参考值。31.5.2方向图天线的辐射电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。天线方向图是空间立体图形,但是通常应用的是两个互相垂直的主平面内的方向图,称为平面方向图。在线性天线中,由于地面影响较大,都采用垂直面和水平面作为主平面。在面型天线中,则采用E平面和H平面作为两个主平面。归一化方向图取最大值为一。在方向图中,包含所需最大辐射方向的辐射波瓣叫天线主波瓣,也称天线波束。主瓣之外的波瓣叫副瓣或旁瓣或边瓣,与主瓣相反方向上的旁瓣叫后瓣。图三:全向天线水平波瓣和垂直波图,其天线外为圆柱型;图四:定向天线水平波瓣和垂直波瓣图,其天线外形为板状。图三(全向天线波瓣示意图)图四(定向天线波瓣示意图)通常会用到天线方向图的以下一些参数:(1)主瓣宽度,指主瓣最大辐射方向两侧的两个半功率点的矢径之间的夹角,记为θ0.5主瓣宽度越小,说明天线辐射的电磁能量越集中,定向性越好。4(2)副瓣电平,指副瓣最大辐射方向上的功率密度和主瓣最大辐射方向上的功率密度之比。(3)前后向抑制比,后瓣最大辐射方向上的功率密度主瓣最大辐射方向上的功率密度之比。1.5.3极化极化是描述电磁波场强矢量空间指向的一个辐射特性,当没有特别说明时,通常以电场矢量的空间指向作为电磁波的极化方向,而且是指在该天线的最大辐射方向上的电场矢量来说的。电场矢量在空间的取向在任何时间都保持不变的电磁波叫直线极化波,有时以地面作参考,将电场矢量方向与地面平行的波叫水平极化波,与地面垂直的波叫垂直极化波。由于水平极化波和入射面垂直,故又称正交极化波;垂直极化波的电场矢量与入射平面平行,称之平行极化波。电场矢量和传播方向构成平面叫极化平面。电场矢量在空间的取向有的时候并不固定,电场失量端点描绘的轨迹是圆,称圆极化波;若轨迹是椭圆,称之为椭圆极化波,椭圆极化波和圆极化波都有旋相性。不论圆极化波或椭圆极化波,都可由两个互相垂直线性极化波合成。若大小相等合成圆极化波,不相等则合成椭圆极化波。天线可能会在非预定的极化上辐射不需要的能量。这种不需要的能量称为交叉极化辐射分量。对线极化天线而言,交叉极化和预定的极化方向垂直。对于圆极化天线,交叉极化与预订极化的旋向相反。所以交叉极化称正交极化。1.5.4输入阻抗天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。52天线阵与面向天线基本理论2.1天线阵许多天线按照一定的规律放在一起就构成了天线阵。这种天线阵的方向图可把各天线的方向图叠加在一起求得。因此天线阵的方向图与每一天线的型式、取向以及天线上电流分布的大小与相位等有关。调整天线之间的相对位置和电流关系,可以得到各种形状的方向图。组成天线阵的独立单元为阵元或天线单元,如果阵元排列在一条直线或者一个平面上,称为直线阵或者平面阵。(1)二元天线阵P点的合成场强为(2)均匀直线式天线阵定义:指各元天线除了以相同的取向和相等的间距排列成一直线外,它们的电流大小相等,而相位则以均匀的比例递增或递减。P点的合成场强为式中阵函数,最大值条件为2.2面向天线基本理论应用数学物理方法分析研究面天线问题的理论。面状天线(简称面天线)包括:①声学型,如叭天线和开口波导辐射器;②光学型,如抛物面反射器天线和透镜天线;③表面波型,如介质棒天线和各种形式的平面形结构表面波天线。电磁场的边值问题对于标量亥姆霍兹方程,有11个可分离变量的坐标系,对于矢量亥姆霍兹方程有6个可分离变量的坐标系。当天线的外表面能与某个可分离变量坐标系中的一个坐标面重合时,就可用分离变量法来求解。或者,当某个可分离变量坐标系中的几个坐标面的各一部分或全部与天线的外表面重合时(即这些坐标面将天线6包围),也可用分离变量法求解。使用这种方法时,首先根据所研究的天线外形,选择一个合适的可分离变量的坐标系,再用坐标面将天线的表面包围起来,将外部空间按坐标面分成若干区,然后用本征模函数表示各区的场和源,根据问题的边界条件来定本征值,并根据各区之间的边界条件求本征模函数的系数。这种分析方法仅适用于极少数的天线问题,例如用球面坐标系解球面反射镜天线。这种方法未能推广的原因是由于数学上的困难。对于绝大多数天线来说,很难找到合适的可分离变量的坐标系,另一方面,即使有了合适的坐标系,其解的表达式也非常复杂。3天线未来发展趋势分析3.1趋势分析从无线网络发展趋势及运营商面临的各种挑战来看,天线技术未来的发展必将遵循以下几个方向。⑴天线体积小型化天线小型化是在保证天线性能基本不变的条件下,减小天线的体积。小型化是一个基础性技术,是天线永恒的发展方向。⑵多种制式网络共天馈应用未来多种制式共用一面超宽带天线,不仅天线工作频段覆盖多个制式,而且可以根据系统的不同要求实现每一个制式的独立调节。多制式天线的应用将节省建站成本和天面资源,灵活满足每种制式的网络覆盖要求。⑶天线功能模式向智能化功能方向发展未来天线实现智能化的波束赋形、波束指向控制、波束分裂和远程控制,灵活满足各种场景的应用需求。通过天线的智能化实现系统间互操作和资源的优化利用,最终实现智能化的运维方式。⑷天线与射频模块连接由分离式向集中式发展未来集中式的设备代替分离式的设备,光纤代替电缆,天线与主设备实现小型化和一体化并充分结合,实现天面资源的节约和灵活的部署方式,适应网络扁平化的发展趋势。73.2关键技术分析3.2.1小型化天线技术天线小型化有两种实现方式。第一种是通过优化天线设计方案,实现服务区外电平快速下降、压低旁瓣和后瓣,降低交叉极化电平,采用低损耗、无表面波寄生辐射、低VSWR的馈电网络等途径提高天线辐射效率,从而实现同等增益下天线体积的缩小。这种方式天线的性能指标不变,但是限于技术难度,体积下降程度有限,实现难度比较大而且成本较高。第二种实现方式是通过降低天线的增益来实现体积的减小。这种方式的体积下降明显,增益每降3dB体积就会缩小一半,比较容易实现,但是小型化之后增益指标的下降会限制天线的应用范围。为保证天线小型化后的性能
本文标题:电磁场与电磁波综述
链接地址:https://www.777doc.com/doc-2159394 .html