您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 第六讲一次函数动点问题
动点问题1、如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示,请回答下列问题:(1)点P在AB上运动时间为s,在CD上运动的速度为cm/s,△APD的面积S的最大值为cm2;(2)求出点P在CD上运动时S与t的函数解析式;(3)当t为s时,△APD的面积为10cm2.2、如图1,等边△ABC中,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ,设动点运动时间为x秒.(图2、图3备用)(1)填空:BQ=,PB=(用含x的代数式表示);(2)当x为何值时,PQ∥AC?(3)当x为何值时,△PBQ为直角三角形?3、如图,矩形ABCD中,AB=6,BC=8,点P从A出发沿A→B→C→D的路线移动,设点P移动的路线为x,△PAD的面积为y.(1)写出y与x之间的函数关系式,并在坐标系中画出这个函数的图象.(2)求当x=4和x=18时的函数值.(3)当x取何值时,y=20,并说明此时点P在矩形的哪条边上.4、如图1,在矩形ABCD中,点P从B点出发沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后又恢复为每秒m个单位匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图2所示.(1)求矩形ABCD的长和宽;(2)求m、a、b的值5、如图1所示,在直角梯形ABCD中,AB∥DC,∠B=90°.动点P从点B出发,沿梯形的边由B→C→D→A运动.设点P运动的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图2所示,试求当0≤x≤9时y与x的函数关系式.6、如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.答案1、解:(1)点P在AB上运动的速度为6÷6=1cm/s,在CD上运动的速度为6÷3=2cm/s,当点P运动到点B时,△APD的面积S最大,最大值是×6×6=18cm2;(2)PD=6﹣2(t﹣12)=30﹣2t,S=AD•PD=×6×(30﹣2t)=90﹣6t;(3)当0≤t≤6时,S=3t,12≤t≤15时,90﹣6t=10,t=,所以当t为(s)、(s)时,△APD的面积为10c△APD的面积为10cm2,即S=10时,3t=10,t=,当m2.2、解:(1)根据题意,BQ=x,PB=6﹣2x;(2)若PQ∥AC,有,即,解之得:x=2;(3)当∠BPQ=90°时,根据三角函数关系,可知BQ=2BP,∴x=2(6﹣2x),解之得:x=,当∠BQP=90°时,2BQ=BP,即6﹣2x=x,解之得:x=.3、解:(1)当点P在线段AB上时,此时AP=x,AD=8,根据三角形的面积公式可得:y=•AD•AP=×8×x=4x,当点P在线段BC上运动时,面积不变;当点P在线段CD上运动时,DP=6+8+6﹣x=20﹣x,AD=8根据三角形的面积公式可得:y=•AD•DP=×8×(20﹣x)=80﹣4x,∴y与x之间的函数关系式为y=(2)当x=4时,y=4x=4×4=16,当x=18时,y=80﹣4×18=8;(3)当y=4x=20,解得x=5,此时点P在线段AB上,当y=80﹣4x=20,解得x=15,此时点P在线段CD上.4、解:(1)从图象可知,当6≤t≤8时,△ABP面积不变即6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位∴CD=2(8﹣6)=4∴AB=CD=4(2分)当t=6时(点P运动到点C),S△ABP=16∴AB•BC=16∴×4×BC=16∴BC=8(4分)∴长方形的长为8,宽为4.(2)当t=a时,S△ABP=8=×16即点P此时在BC的中点处∴PC=BC=×8=4∴2(6﹣a)=4∴a=4(6分)∵BP=PC=4∴m=BP÷a=4÷4=1,当t=b时,S△ABP=AB•AP=4∴×4×AP=4,AP=2∴b=13﹣2=11(9分);5、解:由题意知:BC=4,DC=9﹣4=5,AD=5…(3分)…(5分)当0≤x≤4时,…(8分)当4<x≤9时,…(9分)6、解:(1)观察图象得,S△APQ=PA•AD=×(1×a)×6=24,解得a=8(秒)b==2(厘米/秒)(22﹣8)c=(12×2+6)﹣2×8解得c=1(厘米/秒)(2)依题意得:y1=1×8+2(x﹣8),即:y1=2x﹣8(x>8),y2=(30﹣2×8)﹣1×(x﹣8)=22﹣x(x>8)又据题意,当y1=y2时,P与Q相遇,即2x﹣8=22﹣x,解得x=10(秒)∴出发10秒时,P与Q相遇.
本文标题:第六讲一次函数动点问题
链接地址:https://www.777doc.com/doc-2160987 .html